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Abstract

An Inertial Navigation System(INS), the Global Positioning System, and a ground

based transponder system(RRS) can all be used to provide the user with a navigation

solution. Yet by integrating these three navigatiun systems with an extended Kalman

filter(EKF), a navigation solution is attained that benefits from the information of all three

subsystems. This research develops a multiple model EKF failure detection, isolation, and

recovery(FDIR) algorithm using a Chi-Square failure test to provide robust navigation

solution to measurement failures. The algorithm specifically counters failures in the GPS

and RRS range measurements. Analysis is conducted using a Kalman filter development

package known as the Multimode Simulation for Optimal Filter Evaluation (MSOFE). Both

a large order truth model for the navigation system (in which a full 24 satellite constellations

is modeled) and a reduced-order Kalman filter are developed. Results suggest that the

multiple model algorithm can correct for all single measuremen)t failures.
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FAILURE DETECTION, ISOLATION, AND RECOVERY IN AN

INTEGRATED NAVIGATION SYSTEM

1. Introduction

Currently within the Air Force arsenal, multiple navigational tools exist to help the

pil.ot navigate his plane. The three navigation tools that will be the focus of this research

are the Inertial Navigation System(INS), the Global Positioning System(GPS), and the

ground based Range/Range-Rate System(RlRS). Each of these tools generates a specific

form of information about the position and velocity of the aircraft. The purpose of an

integrated navigation system is to collect information from the various navigation tools,

and then produce an accurate and robust navigation solution. The navigation solution

should consist of the most accurate position, velocity, and orientation estimates for the

aircraft. Yet it is desirable for the system to be both accurate and robust. To be robust,

the integrated navigation solution must continue to operate as accurately as possible when

failures in the system occur. This thesis will focus on a failure detection, isolation, and

recovery technique that will make an integrated navigation system robust to GPS and RRS

measurement failures.

1. 1 Background

The topic pursued in this thesis emanates from ongoing AFIT research. The over-

all goal of this research initiative is to develop next generation navigation systems for

modern aircraft and missile systems. This research has been sponsored by the Central In-

ertial Guidance Test Facility (CIGTF), 6585th Test Group, Air Force Materiel Command

(AFMC), Holloman AFB, NM. CIGTF has sponsored this research in support of their

navigation test range.

The past research at AFIT began with the generation of computer models for the

INS, GPS, and RRS navigation systems, as well as the development of an integration

scheme to blend the information from these three sources into a single navigation solution,
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AFIT has chosen to blend the information using an extended Kalman filter (EKF). The

overall navigation system developed by this early research became know as the Navigation

Reference System (NRS) [14]. Later AFIT research pursued failure detection algorithms

to use in conjunction with the NRS, to detect and isolate GPS measurement signal failures

[19]. The success of this early failure detection work has lead AFIT to pursue a failure

detection, isolation, and recovery (FDIR) algorithm that will allow for accurate and robust

system performance.

1.2 Problem Definition

The research to be conducted this year will expand on past AFIT research to imple-

ment a complete FDIR algorithm for the NRS model. Starting with the original NRS, a

new navigation system will be developed th,,.t not can only detect and isolate failures, but,

will also reconfigure to operate accurately during the failures. The failures are errors in

the measurement signals received through the Gt'S and RRm subsystems. The new system

that is developed in this thesis will be referred to as the Multiple Navigation Reference

System(MNNRS).

This thesis will augment past research in three specific areas. First the research

will look at failures in both GPS and RRS measurement signals as opposed to past AFIT

research which considered only GPS failures [19]. The second addition to this research

initiative is the concept of robust navigation. Past research has looked exclusively at

failure detection, and isolation(FDI) techniques. This research is adding recoverability,

to create a complete FDIR algorithm. This thesis develops one method of modifying the

NRS to make it robust to failures. The development of the MNRS moves AFIT one step

closer to developing a failure detection, isolation, and reconfiguration algorithm for all

possible navigation failures. Finally, this thesis explores various matching filter techniques

for identifying the exact type of failure that is affecting the system. Two identification

techniques will be evaluated for future applicability to a combined FDIR algorithm.
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Figure 1.1 How Failures Enter the Navigation System

1A3 Scope

The scope of this thesis is defined by the exact failures that are to be induced within

the system. The failures to be considered enter the system through outside measurement

sources. The two prevalent navigation measurement sources in the system are the GPS and

the R.RS measurement signals (see Figure 1.1). Errors in these signals can be caused by

natural atmospheric affects, failures in the respective signal transmitters, or hostile enemy

signal degradation. Yet the actual source of the failure is not truly important to the FDIR

algorithm. Only the effect of the error source on the measurement signal is important for

the purpose of FDIR.

This thesis assumes that all the failures in these signals can be modelled as increased

n oise, a step bias, or a ramp offset added to the original measurement signal. Figure 1.2

shows how each of these tailures would affect the uncorrupted GPS or RRS measurement
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signal. The errors that affect the measurement signals are assumed to be additive in nature

for this thesis. The use of step and ramp additive failure offsets are standard methods to

simulate "spoofing" of a system.

The MNRS is limited to reconfiguring itself for single failures. When two failure

occur, the MNRS can detect the existence of the second failure, but cannot recover an

unbiased navigatio,1 solutiorn. The al-gorithm also has noa blitv to i',d1 te the fa!Ied mea-

surements when more then one failure occurs. The single failure iinitation is mainly due to

limited computational modelling capacity. To develop an MNRS system robust to multiple

failures would require more parallel computing than is available for this thesis. Therefore,

the goal for development of the MNRS system is robustness to single step, ramp, or noise

biases induced in either the GPS or RRS measurement signal.

The identification of failure type will focuses on distinguishing between step, ramp,

and noise offset failures. Two different matching filter techniques are compared to de-

termine which more accurately identifies the type of failure once it. has been detected.
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1.4 Brief System Description

The proposed MNRS is based on the work accomplished in past AFIT theses in

the development of the NRS. The system description will begin with a description of the

original NRS, after which the MNRS will be presented.

The original NRS consists of a single EKF that gathers together information from the

GFS, RRS, and INS to produce a single navigation solution. Th-,e system is modelled on a

Sun SPARC workstation that simulates an aircraf, flying a highly dynamic flight profile.

The NRS navigation solution is the combination of the continuous INS navigation solution

and the output from the EKF (see Figure 1.3). The output of the EKF is the estimate

of the errors in the INS navigation solution. Therefore, the plane is actually flying on the

INS output corrected by the EKF's best estimate of the errors committed by the INS. The

EKF bases its estimate on information it receives from the INS, GPS, and RRS. Therefore,

the aircraft is navigated using the information provided by all three navigation systems.

A more complete description of the EKF and how it is used in t' e NRS is provided in

Chapters 1I and IlI.
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The MNRS is basically a multiple model implementation of the original NRS. The

MNRS consists of a bank of NRS navigating filters which run in parallel (see Figure 1.4).

Each NRS filter produces its own navigation solution. Unlike traditional multiple model

schemes, each NRS filter produces an accurate solution when no measurement failures

occur. The NRS filters have been designed in such a way that a failure in one measurement

signal (GPS or RRS) will affect all but one of the NRS filters. Whether a failure lhas

occurred or not is decided in a failure detection test conducted on each of the NRS filters

(see Figure 1.4). When a failure occurs, all the NRS filters but one will fail the detection

test, and navigation of the aircraft then continues on the single filter that passes its test.

This allows for robust navigation during the failure. A more complete description of this

FDIR algorithm is provided in the literature review, Section 1.6. The real benefit of using

the MNRS is that during single failures, one and only one of the NRS filters will remain

un:Lffected, which allows for highly accurate navigation during measurement signal failures.
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1.5 Assuupthorln

All theses are limited by the assunlptionsib made, and no research call be adequately

evaluated unless these assumptions are clearly defined. This section outlines the assump-

tions that have been made in this thesis.

1. All work has been conducted through computer simulation. The --real" world in

the simulation is modelled as a full-order-state truth model. The MNRS filter is

represented by a bank of reduced-order filter models. This modelling structure has

been chosen to validate the function of the EKFs in the MNRS [91. Once this

computer simulation work has been completed and verified, a decision can be made

as to whether it is beneficial to put this theory into application. Yet this decision

cannot be made until complete and thorough simulation work has been completed.

The full-order truth and filter models are presented in Chapter 111.

2. The INS platform is assumed to be stabilized with a barometric altimeter. An INS

platform is unstable without an outside measurement source in the vertical channel

[1]. While a barometric altimeter is not the only way to stabilize a platform, it is

a commonly used method. The use of the barometric altimeter is included in the

modelling of the system.

3. A sample period of two seconds has been chosen for the EKF. The sample period

refers to how often GPS and RRS error measurements will be brought into the EKEF.

Past ARIT research has used a variety of sample periods, varying from two to ten

seconds for the NRS, The decision to use the two second sample period has been

based primarily on the computer facilities available and the accuracy of navigation

solution produced. Various runs at different sample periods confirm that this sample

period is valid for simulation purposes [19].

4. The MNRS model used consists of a bank of NRS models in parallel. Each of

these models has been developed using differential equations representing the error

characteristics of the navigational system operating in the real world. The models

are based on the theoretical work conducted at CIGTF and AFIT in developing error

state models for the GPS, RRS, and INS navigational systems. The GPS and RRS
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models are generic models [14], while the INS model is based on the Litton LN-93

strap-down inertial navigation system [4tJ. A more complete description of the system

models is presented in Chapter I1I.

5. Failures are assumed to be additive in nature rather than multiplicative. rhis as-

sumlption has been made because it both greatly simplifies the math and it describes

most sensor failures that occur in the real world. The algorithms presented are valid

only for failures of an additive nature.

6. The computer simulations have been developed using a program called Multi-mode

Simulation for Optimal Filter Evaluation (MSOFE) [13]. MSOFE is established Air

Force software to develop and test Kalman filter algorithms. The computer-sin tulated

flight profile has been generated by the program PROFGEN [12]. PROFGEN is

designed to work with MSOFE to provide the necessary data files to simulate dy.unamic

flight profiles. The FDIR algorithms are implemented using the commercial package

software MATLAB [81.

7. The state dynamics matrix F is considered piecewise constant, i.e. constant between

sample times two seconds apart. This assumption is necessary to implement the

discrete time GLR matching filters algorithm developed in Section 2.3.2.2. The

validity of this assumption has been documented in past AFIT research [19].

8. The simulation software, MSOFE and MNTLAB, has been coded to run in double

precision to increase numerical stability of the simulation. This is necessary due to

large disparities in filter variables that need to be operated on during the simulation.

Due to the fact that rescaling of the disparate variables is not considered an effective

solution for this application, the MSOFE software implements a U-D factorization

algorithm to increase the numerical stability in the EKF equations [13, 9].

9, The MSOFE runs are conducted using 15-run Monte Carlo analyses. While a larger

ba;tch size for the Monte Carlo analysis would be preferable, this value has beeti

chosen to keep the computational burden of the thesis within reasonable bounds,

Single-run Monte Carlo analysis is used for the FDIR runs, to reveal what oilline

operational filters would see and do. The single runs are compared to the 15-run
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Monte Carlo results to ensure that the single runs are reasonable examples of system

operation.

10. The failure thresholds established for the FDIR algorithln have been established

empirically, using good engineering insight and verified through exhaustive testing.

11. Taylor series approximations truncated at first order are used for linearizing nonlinear

equations in the MNRS filter. Perturbations about a nominal trajectory will be

established in each case.

12. A Doppler system is used to provide velocity aiding to the INS. The measurements

from the Doppler are assumed to be ideal and tell the filter the exact error between

the filter state and the truth state. This assumption is relatively poor, yet the

development of a complete Doppler error model is beyond the scope of this thesis.

Also the use of the ideal Doppler measurement allows for direct comparison to past

AFIT research, [14, 19].

1.6 Literature Review

The goal of this literature review is to provide background information leading up

to the choice of FIUR algorithm implemented in the integrated MNRS. The review begins

with an introduction to the basic couicepts of failure detection, isolation, and recovery

(FDIR). Next, va,-ious techniques will be analyzed with the criterion of applicability to the

navigation model. Once a background in failure analysis techniques has been established,

a combination of techniques will be presented in the form of the MNRS algorithm. The

literature review will conclude with an argument for the use of the MNRS FDIR technique

for accurate and robust navigation.

1.6.1 The Concept of Failure Analysis. Failure detection algorithms ar~alyze

multiple information soarces to determine if erroneous information has entered a system.

The erroneous information could be anything from a bias on an incoming measurement to

a hard failure of an entire subsystem. Each algorithm differs in function and complexity.

Simple algorithms simply detect the existence of failures in the system. More complicated

algorithms actually isolate and recover from failures. However, despite tile differences in
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various algorithms, the fundamental objective of failure analysis is to examine information

in such a way that failures can be seen as discrepancies between different information

sources [21:pp. 601].

Failure analysis hinges on the availability of multiple information sources providing

redundant information. With only one source of information, failed operation cannot be

distinguished from normal operation of a system. For example, imagine you are driving a

car in which the only source of information about your speed is the speedometer. In this

car, the driver has no choice but to rely on the speedometer for his speed information. This

imaginary car cannot employ failure analysis, because it contains no redundant information

sources. Yet in a real car, failure analysis algorithms are constantly employed. In a real car,

the driver has access to multiple sources of information about his speed; the speedometer,

the sound of the engine, visual cues such as the blurring of the scenery, and the tone of

his passenger's voice. If the information from the speedometer is contrary to all his other

information sources, the wise driver notes the inconsistency, sluws the vehicle, and declareb

a failure in his speedometer. The driver has just performed the function of FDIR. While

the above example may seem trivial, all FDIR algorithms perform the same function as

the driver did analyzing his multiple information sources.

It is important to note in the example that, while all the sources of information are

providing data about the speed of the car, all thu information is formatted in different

reference frames (speedometer in miles/hr, the passenger in decibels). An FDIR algorithm

needs te transform all the information into one frame, so that they can be compared

equitably. If the information is not transformed to a common frame, there is no basis

for comparison [6:pp. 400]. This concept will reappear in the development of the FDI

algorithm for the integrated NRS in Chapter H1i.

Another important concept in failure analysis is the identification of failure types.

When a measurement or component of a system fails, knowledge of the type of failure that

has occurred can be crucial to correcting the problem. For instance, when a speedometer

goes bad, the driver can compensate for this if he knows the type of failure that has

happened (i.e., is the speedometer too slow or too fast?). If the driver knows the type
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of failure, he caun adjust the value of the measurement he reads from the speedometer

accordingly. This process is called corrective feedback through failure mode analysis.

Now that a basic understanding of failure analysis has been established, a review of

various failure analysis techniques is presented. Each technique will be evaluated on its

ability to conduct effective FDIR.

1.6.2 The Voting Method. The simplest form of failure analysis is voting. To

implement simple voting, one needs at least three redundant information sources. Failure

detection and isolation is conducted by looking at the three sources and seeing if one is not

in agreement with the other two. If one source of information disagrees with the other two,

then the inconsistent source is declared a failed source [21:pp. 604-605]. If it is possible

to continue operation with only two information sources, the voting algorithm is able to

recover from the failure and continue operation.

The benefit of this method is its utter simplicity- Unfortunately, simplicity is also

its major drawback. This FDIR algorithm assumes majority rule. While this is very

democratic, it does nothipg for the user if the one source happens to be right while the

other two are wrong. This dilemma can be cured by increasing the number of voters. Yet

massive sensor redundancy is impractical in the limited space and computational domain

of avionics [21:pp. 604-605]. Therefore, the voting algorithm was not seriously considered

for the integrated navigation system.

1.6.3 The Chi-Square Test (X(k)). The Chi-Square testing algorithm[21] assumes

that a Kalman filter is being used to blend the multiple information sources. A complete

presentation of Kalman filter theory is presented by Maybeck [9]. The Chi-Square test

operates on the measurement residuals of the Kalman filter and decides whether a failure

has occurred. The Chi-square test is a function of both the measurement residual vector

and the filter-computed covariance of the residual vector. The Chi-Square test therefore

is a function of both the size of the residuals and the Kalman filter's confidence in the size

of the residuals. The Chi-Square test declares a failure when the X(k) function is greater

than a pre-determined threshold. The threshold is violated when the difference between the
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Kalman filter estimate of the incoming measurement and the actual measurement grows

large with regard to the filter-predicted covariance of the residual. Past work at AFIT

has shown the Chi-Square test to be a highly effective and consistent failure detection

technique [2, 5].

While the Chi-Square test provides excellent failure detection, the algorithm is inca-

pable of performing failure isolation or recovery. As a result, the Chi-Square test cannot

be classified as a stand-alone FDIR algorithm [21:pp. 606-607].

1.6.4 Generalized Likelihood Ratio Testing (GLR). The GLR test[20], altaiough

similar to the Chi-Square test, provides for both detection and isolation of failures. Like

the Chi-Square test, the GLR test uses the residuals of a Kalman filter as its basis for

failure analysis. Yet the GLH. test uses the residuals in such a way that it is able both to

detect and to isolate failures [20].

The GLR test feeds the residuals of the Kalman filter into a bank of estimators,

each designed to look for a certain type of failure mode (see Figure 1.5 ). Examples of

failure modes are no failure, a step failure, and a ramp failure. Each estimator tests a

hypothesis, Hk, corresponding to a possible failure affecting the system. H0 corresponds

to the no-failure hypothesis, while H, and H., are the bias and the ramp failure hypotheses

respectively. Each estimator conducts its own maximum likelihood estimate (MLE) for its

specific hypothesis. The results of each MLE are fed into a common test logic algorithm

(see Figure 1.5). This algorithm decides which hypothesis is true, thereby dete:mining

which, if any, failure has occurred.

One of the key benefits of the GLR test is that it needs only one estimator for each

type of failure. The GLRP algorithm actually estimates unknown variables such as the

magnitude of the failure type in its FDL process; therefore only one estimator is needed

for each type of failure. This aspect greatly reduces the computational load of the GLPR in

comparison to other multiple model techniques. Also, the estimate of the failure magnitude

can be used to help develop a feedback loop to allow for reconfigurability of the system.

While it is possible to use the GLR as a complete FDIR technique, past AFIT research has
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been unable to produce accurate enough failure estimates to implement effective system

recovery [19].

1.6.5 Multiple Model Adaptive Estimation (MMAE). MMAE, like the GLR and

the Chi-Square tests, exploits the information provided by the residuals of Kalman filters.

The strength of MMAE lies in its rapid reconfigurability. By running multiple filters in

parailel, residual information at each update is used to instantly reconfigure the system

to failures. Unlike the previous algorithms which implement only a single Kalman filter

(see Figure 1.5), the multiple model structure of MMAE is fundamentally designed for

robustness to known system failures.

To describe MMAE, first a failure space is defined as all the possible operating modes

of a system under all possible failures that are to be considered. The MMAE can be robust

to system failures because it implements a bank of Kalman filters that span the failure space

of the system (see Figure 1.6). Each Kalman filter in the bank models the operation of the

system under a different assumed failure mode. To get a single navigation solution out of

the bank of filters, the outputs of all the filters are blended together through a probability-
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weighted average based on the probability of that filter modeling what is actually occurring

(see Figure 1.6). Therefore, when no failure has occurred, the filter modelling no failure

gets a very high weight (almost one), while all the other models will get very low weights

(almost zero). When a failure occurs those filters with the best model of the failure will get

the highest weighting probabilities. In Figure 1.6, one can see that the residuals of each

Kalman filter are fed into the algorithm that computes the relative weights placed on each

filter estimate [10]. The real benefit of MMAE is that the bank of Kalman filters spans
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Figure 1.6 Multiple Model Adaptive Estimation

an entire failur?! space. As long as the system being affected by a failure remains withia

the span o! this field, the filter is robust to the occurrence of that failure [11]. Therefore

within tUe scope of the failure space, MMAE is an extremely effective FDIR algorithm.

The major drawback of MMAE is the high number of Kalman filters that can be

necessary to span a realistic failure space. If MMAE is implemented with too few filters,
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none of tha Kalman filters will have good looking residuals, thus limiting the accuracy of

the blended state estimates. Yet the necessary number of models can rapidly grow into

the hundreds, when mapping a large failure space. For this reason, a modification of the

MMAE algorithm can often be more effective than MMAE in its pure form [21].

1.6.6 A Combination of Techniques. The three FDI algorithms, MMAE, GLR

test, and Chi-Square test, each have their benefits and drawbacks. For the MNRS the goal

is to construct a single FDIR algorithm that exploits the best of all three methods.

Th'e proposed MNRS algorithm is fundamentally a multiple model FDIR algorithm.

Multiple Kalman filters run in parallel, each identical in structure, yet receiving different

sets of measurements. Table 1.1 shows the differences in the incoming measurements

for tL'• t.:i filters used in the parallel algorithm. The first filter is the one that will be

used under a no-failure situation. It will receive measurements from those satellites and

transporý'-,ers geometrically located to give the best navigation information. While this

filter is rur-ting, nine other filters are running in parallel. In each of these nine filters, one

of thie onrginal signals has been switched with an alternate signal (either a new GPS signal

o; t-'ailsponder signal). Therefore, none of the ten filters is being updated with the same

measurement information. In Table 1.1, satellites 1-4 and transponders 1-5 combine for

the optimal navigation solution using the MNRS. Satellite 5 and transponder 6 are the

alternate signals which allow for the reconfigurability under failure conditions.

Table 1.1 MNRS Filter Measurement Structure

Filter [ Satellites Used Transponders Used

1 1,2,3,4 1,2,3,4,5
2 1,2,3,5 1,2,3,4,5
3 1,2,4,5 1,2,3,4,5
4 1,3,4,5 1,2,3,4,5
5 2,3,4,5 1,2,3,4,5

6 1,2,3,4 1,2,3,4,6
7 1,2,3,4 1,2,3,6,5
8 1,2,3,4 1,2,6,4,5

9 1,2,3,4 1,6,3,4,5
10 1,2,3,4 6,2,3,4,5
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With the above modelling structure, failure detection is conducted with the Chi-

Square test. The Chi.Square evaluation is run on all ten filters (see Figure 1.7 ). If one of

satellites 1-4 or one of transponders 1-5 fail, -he Chi-Square algorithms will signal a failure

in nine of the ten filters (including Kalman filter 1, the navigating filter). At this point the

navigation solution will be switched from Kalman filter 1 to whatever filter has not failed

(see Figure 1.7 ). In this way the MNRS is robust in the face of single failures in satellite

and transponder signals.
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Figure 1.7 Combined FDI Algorithm

A major difference between this algorithm and normal MMAE lies in the fact that,

during the no failure case, all the separate filters are producing an accurate solution. In

a normal MMAE, only one accurate solution is eve,: produced. Since only one navigation

solution is needed in the no-failure case, the MNRS chooses the best filter output based on

the location of the RRS transponder sites and the GPS satellites. Therefore the MNRS is
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fundamentally a combination of the original MMAE technique modified to exploit existence

of redundant sensors (voting technique) and the high quality of the Chi-Square tests.

The MNRS does not use any type of feedback to correct the failed measurement.

The failed measurement is abandoned. While this removal of the huiled measurement from

the system allows for highly accurate results, information is lost whfi the measurement is

abandoned. Therefore, an effort is made to examine matching filter tecaniques to identify

the type of failure and estimate its magnitude. Two matching filter algorithms are consid-

ered. The first matching filter algorithm is derived from the GLR test. This filter attempts

to distinguish between step and ramp failures. A failure magnitude estimator can also be

derived from the GLR algorithm. The second matching filter algorithm i,; an ad-hoc de-

sign based on recognizing failure types in the output of the Chi-Square test. Li the MNRS

diagram, Figure 1.7, these two different matching filter algorithms are represented by the

matching filter block. It is hoped that this failure identification work will allow recovery

of failed measurements in the future.

The structure for this model has been inspired by two separate sources; multiple

model adaptive estimation presented by Maybeck [11] and a robust navigation system

proposed by Schwartz [16]. By using different aspects of both studies, the above algorithm

has been formulated. It should be noted that the MNRS algorithm can detect up to two

failures of the system, yet it can only isolate and reconfigure for one failure at a time.

1.6.7 Literature Review Conclusion. The Chi-Square test, MMAE algorithms,

and matching filters are combined to produce the MNRS FDIR algorithm. Each of the

individual failure analysis techniques have characteristics that are exploited for the benefit

of the overall navigation system. MMAE provides the concepts of instant reconfigurability

and multiple modelling to the combined FDI algorithm. The Chi-Square test is exploited

for its rapid failure detection. Using the Chi-Square in each of the distributed filters allows

for the validity of a filter to be declared as fast as possible. Finally, the matching filters

are used to identify the type of failure. In this way, future corrective feedback can be used

to bring the failed models back on line with the failure compensated.
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1.7 Plan of Attack

The work for this thesis divides itself into three distinct tasks to be compleied. These

three steps in the research are presented in Sections 1.7.1, 1.7.2, and 1.7.3. The first two

steps encompass the work needed to get the basic MNRS operational, while the third step

looks at ways of expanding the MNRS for future research.

1.7.1 Preliminary Research. Thie introductory research began with the work

leading up to the choice of the MNRS for robust navigation. The literature review, pre-

sented in Section 1.6, is the culmination of this research.

A preliminary study was made to see if a multiple model system could adequately

detect single failures. This preliminary test was conducted as a class project for the AFIT

EE735 class. The project used a simpiified INS/GPS model and employed a multiple

model structure similar to the MNRS approach. The multiple filter system designed by

the EE735 dzis luoked fo1 step, .ad' ituise uffset, o iiwuuiiiig Qp5 signals. The

project was considered only a preliminary study because simplified filter and truth models

were used and because transponder failures were not considered. The completed report

for this project demonstrated the effectiveness of the multiple model approach for robust

navigation [2].

The preliminary studies concluded when a choice was made to go with MNRS system

using the multiple model approach with the Chi-square test as the failure detection and

isolation algorithm. Once the groundwork of the thesis had been established, the actual

system development and testing could begin.

1.7.2 System Development and Testing. The second phase of research is pre-

sented as a three-step process beginning with model development and ending with FDIR

verification.

1. Rework the original INS Litton LN-93 truth and filter models based on the most

recent research completed by the Avionics Directorate, System Avionics Division,

Wright Laboratory (WL/AAAS), AFMC.
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2. Integrate the new INS model with the original GPS and RRS models, and recode all

the models on the Unix-based SPARC computer system. Verify the operation of the

filter model against the truth model.

3. Develop the computer code to create the MNRS system. Test this multiple model

structure for correct operation in a single-failure environment.

1.7.3 Advanced Research into Adaptive Techniques. The final goal for this re-

search was to compare two matching filter algorithms to determine the performance ca-

pabilities of each. While the effectiveness of the matching filters is not crucial to the

operation of the MNRS, this work can lead to future implementation of corrective feed-

back algorithms for the MNRS. The implementation of corrective feedback utilizing the

matching filters is beyond the scope of this thesis.

1.8 Overview of Thesis

Chapter 1I presents the detailed theory used in the research. Kalman filter theory is

introduced with emphasis on the development of the extended Kalman filter. The theory

behind the various failure analysis algorithms is also explained, including the equations

implemented for the Chi-square and the matching filter algorithms. Finally, the analysis

used for selecting thresholds is discussed.

Chapter III fully describes the navigation system's parameters and operational details

through ai overall system description. Models for the INS, GPS and RRS portions of the

NRS model are defined in detail. A description of how the NRS filters are used in the

MNRS is also presented. This Chapter also presents various failure models implemented

in the thesis.

Results of the work accomplished are shown in Chapter IV. The reduced order ex-

tended Kalman filter used in the MNRS filters is analyzed, and a discussion of the FDIR

performance is presented. Chapter V summarizes the research with conclusions and rec-

omnmendations.
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IH Kalman Fillt cMi and Failure Detcctiwo

2.1 Overview

This section presents the fundamental theory for the application of Kalnutn filter

theory to the navigation problem, First, the necessary update and propagation equations

are developed for a sampled-data extended Kalman filter (EKF). The EKF theory supports

the basic operation of the NRS model. Next, the failure detection and isolation theory

implemented in the MNRS is presented. This theory focuses on the development of the Chi-

Square test and two matching filter algorithms. The chapter concludes with a discussion

of the threshold selection criteria for failure declaration algorithms.

2.2 The Extended Kalman Filter

The MNRS model is generated using error state, extended Kalman filter (EKF) equa-

tions. The EKF provides excellent state estimation of the non-linear time-varying stochas-

tic navigation equations. These stochastic equations are linearized through approximation

techniques about a nominial trajectory to form a linearized Kalman filter (LKF). The LKF

is the basis for the EKF. The EKF expands upon the LKF by allowing the nominal tra-

jectory to vary over time. The EKF relinearizes its dynamics and measurement equations

about the best state estimate about each update from the GPS and the RRS measure-

ments. The EKF that is implemented in this work is considered a sampled data Kalman

filter since the measurement updates enter the system at discrete times.

2.2.1 The Sampled Data Kalman Filter. Let the system model be expressed as

a state equation of the form

N(t) = f[x(t), t] + G(t)w(t) (2.1)

where the state dynamics vector f[x(t), t] is a nonlinear function of the state vector x(t)

and time t. Let the process noise input matrix G(t) = I and w(t) be a white Gaussiani

noise with mean:

me = E {w(t)} = 0 (2.2)
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and noise strentgth Q(t) defined by:

E {w(t)w,•(t + r)} = Q(t)6(r) (2.3)

Incorporate rneicsurements Z(t) into the filter at discrete times and define them as a non-

linear function of the state vector and time:

Z(t,) = h[x(t,),t,] + v(t,) (2.4)

where v(ti) is a zero-mean white Gaussian noise of covariance R(t4) defined by:

E {Iv(.)vT(t 2)} = J R(t) for t = t, (2.5)
0 for t, tj

and h[x(t,), t] is the nonlinear observation vector. The LKF is based on perturbation states

about a nominal state trajectory x,(satisfying -x,(t 0) = x. and

X.(t) = f[x.(t), t] (2.6)

where f[., is shown in Equation (2.1). The measurements are also based on the nominal

states and defined as:

z.(t,) = h[x.(t,), tj] (2.7)

The perturbation states are found by subtracting the nominal states in Equation (2.6)

from the original states in Equation (2.1):

[*(t) - k,(t)] = ffx(t), t] - tAxj(t), t] + G(t)w(t) (2.8)

Equation (2.8) is approximated to first order through a truncated Taylor series expansion:

bx(t) = F [t; x.(t)] tx(t) + G(t)w(t) (2.9)
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where tx(t) are the perturbation states. The definitions for G(t) atid w(t) -ire unchanged

and the new linearized dynamics matrix F[t; x,,(t)] is found by taking partia derivatives of

fix(t), I] with respect to x(t) and evaluated at the nominal values for the trajectory x,,(t) :

• Ox (2.10)

The discrete-time measurements are similarly approx-imated to first order and are in the

perturbed form;

bz(i,) = H [ti; x(t,)] &Sx(t4) + v(ti) (2.11)

and the same linearization process is used for the measurement matrix HI[ti; x'Jtj)], result-

ing in:

Lit;x, 1(=] h[x(ti). til (2.12)H~q;x,,ti ) - Ox X=x~(t,)

The LKF in this thesis generates error state estimates 6x(t), which can be added to the

nomn-nai states to provide .hole states . stimates : (t) in thef

iCt) = x,(t) + 4,(t) (2.13)

The EKE will now be formed by linearizing about the state estimate i rather than

the nominal trajectory z,,. The following equations use the notation i/ti to represent, the

value cf a. variable at time t, conditioned on the measurements taken through the timo.

Ii, for t being any time in the time interval [ti, ti,±). Also, ti represents the value after

propagation but prior to the nis.surement update and t' corresponds to the value after the

measurement update. The state estimates and covariance values P(t/t) are propagated

from t, to t4+I by solving the following differential equations:

t/Wt ) - fA(t/1, t] (2.14)

P(t/t;) = F[t; .i(t/tj)]P(t/t1 ) + P(t/ti)FT[t; i(t/ti)] + C(t)Q(t)Gr(W) (2.15)
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where

F[t; .(t/t,i)] - f[x(O, t] (2.16)
ax xitt)

and initial conditions are given by:

I= tt) (2.17)

P(ti/ti) =P(t+ý)S(.8

The discrete-time measurements are processed in the EKF through update equations:

K(tp) P(t7)Ht T [t,;.(t7)] {fH(ti; i(t')]P(t-)H T [t,; i(tF)] + R(t,)}-1 (2.19)

=(tt) =i(t) + K(t,) {z, - ,[:4(tp); til} (2.20)

P(t) P(t[)- K(ti)B [ti; i(t7)]P(t) (2.21)

where
0h4x( t,), tJ2.2

H(t,) H f[ti; i (ti)] -. (2.22)

and K(t,) is the discrete-time Kalman filter gain. Note that, for the EKF, the measurement

and dynamics matrices are relinearized about the last state estimate i(t,) rather than the

nominal trajectory used by a simple linearized Kalman filter.

2.2,_' The Discrete-Tim.e Kalraan Filter. In order to utilize the filter outputs in

the GLR matching filter algorithm, it is necessary to discretize the state dynamics matrix

into a state transition matrix (STM), *('t+I,t,). AU other quantities of interest such as

K and H are already in discrete form. The STM must satisfy the following differential

equation and initial condition [9]:

di,&(t, ti)]/dt = F(t),O(t,, t) (2.23)

O (t, = i (2.24)
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Defining At = tj+1 - ti and solving with F assumed constant over At (see Assumption 7))

leads to:

S= eFat (2.25)

The state equation, Equation (2.9) can now be written in the discrete form

4X(ti+l) = '(t4 1 1, 4t)6x(ti) + Gd(ti)Wd(t,) (2.26)

where Gd is assumed to be the identity matrix and wd is defined as a discrete-time zero-

mean white Gaussian noise sequence with covariance kernel:

E {wd(t,)wdT(ty)} J Q4 (t) for t4 = t(2.27)
0 for 4i$ tj

2.3 Failure Detection Algorithms

This section presents the theory for three failure analysis algorithms: the Chi-Square

test, the GLR matching filter, and the Chi-Square residual matching filter. The Chi-

Square test is the failure detection algorithm for each NRS filter in the MNRS model. The

two matching filter algorithms are candidates for the failure type identification algorithm

(identifying between failures). For an explanation as to how these algorithms are combined

in the MNRS model, see Sections 1.6.

2.3.1 Chizi-Square Equations. The Chi-Square test is designed to detect anomalies

in the residuals of a Kalman filter. When the magnitude of the residuals remains larger

than anticipated through the filter-computed residual covariance rmatrix over a window of

time, the Chi-Square test declares a failure. The Chi-Square test is a highly simplistic yet

powerful tool that is capable of detecting failures rapidly and accurately.

The Chi-Square test declares a failure based on the size of the the extended Kalman

filter residuals, y(t,). The EKF residuals, ýrst seen in Equation (2.20), are defined in

Equation (2.28). These residuals are zero mean and appear white to first order with

known covariance, A(tj).
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"y(t,) = z(t) - h[i(ty ), t] (2.28)

A(t4) = H(t1)P(t-;)H T (ti) + R(t,) (2.29)

The Chi-Square test is a function of the Chi-Square random variable, x(tk), and is

given by
k

x(tk)= _ 7 (t)hA-l(tq 7,Y(ti) (2.30)
i=k-N+l

with N being the size of a sliding window in time. In Equation (2.30), the residuals, j'(ti),

are squared to remove sign cancellation in the summation. The square of the residuals is

scaled by the inverse residual covariance, to take into account the confidence the filter has

in its residuals at that moment. The use of the sliding window in time, rather than a full

history from to, reduces the computational load and increases the accuracy of the detection

algorithm. The delay time from failure occurrence to failure detection is a function of the

size of the window, N. A small window size decreases the detection time, however the small

window also increases the likelihood of false alarms. Therefore the size of the window, N,

is chosen to balance the trade-off between detection delay and false alarm rate. The Chi-

oquare test will declare a failure based on a simple threshold test,

.h ,4T r )LUD'
AXklk) > t - t I Al L, ILL

x(tt) < c * NO FAILURE (2.31)

The end of Chapter II will present more detail on the methodology of threshold choos-

ing, and Chapter III will go into greater detail as to how the Chi-Square algorithm is

implemented in the MNRS model.

2.3.2 GLR Matching Filter. The GLR matching filter algorithm is designed both

to distinguish between different types of failures and to estimate the magnitudes of the

failure types. The GLR matching filter algorithm pursued in this thesis is derived from the

generalized likelihood ratio equations [20]. Therefore, before the GLR matching filters are
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presented, the generalized likelihood ratio will be fully presented. Afterwards, the GLR

matching filters used in the algorithm will be derived from the fundamental GLR theory.

2.3.2.1 Derivation of the GLR Equations. The derivation of tae GLR

test will be divided into five steps. The derivation centers around the development of a

likelihood equation based on two different hypotheses. One hypothesis, H 0, represents

a no-failure system. The second hypothesis, H 1, represents a specific failure type added

to the system. As stated earlier in Section 1.3, the failures induced for this thesis will

be additive terms in the measurement updates. The ratio of the log-likelihood of the

two hypotheses will be used to generate a threshold function, 1(ti,9), which satisfies the

following criteria,

1(t,O) > T * FAILURE

1(ti,O) < T NO FAILURE (2.32)

If 1(ti,O) is less than some threshold, T, then H0 is true. Similarly H1 is true if 1(t4,O) is

greater then the 7'. The following steps describe the derivation of the GLR algorithm for

a single failure type, a step failure.

1. Step One, Define the Hypotheses H0 and H1

The derivation of the GLR. test begins with the establishment of the two hypotheses,

each based on a different set of discretized extended Kalman filter equations. The first

hypothesis, H0 (no failure), comes from discretized EKF equations (Equations (2.33)

and (2.34)) that assume that no failure has occurred.

bx($+l) = 1(ti+1, ti)6x(t1 ) + Gd(ti)wd(t) (2.33)

6z 0 (ti) = H(tj)tx(t4) + v(ti) (2.34)

The second hypothesis assumes that an additive failure has occurred on the mea-

suremnent signal. Throughout this section the superscript notation, 0 and 1 refer to

variables associated with Hypotheses Hl and H1 respectively. These equations have
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an extra term that reflects the uature of the failure (Equations (2.35) and (2.36)).

bX(t+1) = 4ft,+1, t))bx(ti) + Gd(ti)wd(ti) (2.35)

6z(4) = H(tJ)6x(t4) + v(t,) + d(t1)n(tj, 6)v (2.36)

where

d(ti) = failure vector
n(ti,6) = failure function
v = unknown size of the failure
6 = unknown time of the failure

Comparison of Equations (2.34) and (2.36) reveals that the BR hypothesis is char-

acterized by the failure offset term, d(ti)n(ti,6)v. The components of thi term de-

termine the type of failure that the GLR algorithm is trying to detect. The n(ti, 6)

dictates the time of failure onset, 8, and the type of failure that has occurred, i.e.

ramp offset, step offset, etc. The v is the magnitude of the failure. The column vec-

tor, d(ti), specifies which of the measurement signals has the failure. Chapter III will

fully describe the failure models for both d(t4) and n(ti, 0). One of the real benefits

of the GLR algorithm, as stated in Section 1.6, is that the unknown variable, v, is

estimated in the GLR algorithm. Therefore v does not need to be predetermined for

the hypothesis, HI.

2. Step Two Development of the Residual Equations

Similar to the Chi-Square algorithm, the GLR test focuses on the residuals for its fail-

ure information. Therefore the GLR derivation hinges on the development of residual

equations for the two different hypotheses H0 and H1. These residual equations are

derived from Kalman filter equations developed for each of the two hypotheses. Equa-

tions (2.37) and (2.38) represent the residual equations for Ho and H1 respectively:

7°(t) = H(t4)6x0 (ti) + v(ti) - H(ti)W-(tj) (2.37)

S= I(4)6x'(ti) + v(t1 ) - H(tj)6i'(4) + d(t,)n(t,, 6)v (2.38)
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Equations (2.37) and (2.38) are rewritten using the following definitions,

e0(ti) = 6x 0(ti) - 6V°-(tj) (2,39)

e'(ti) = bx'(ti) - bil-(tj) (2.40)

to yield,
7Y(t,) = H(t,)e°(t,) + v(t,) (2.41)

"y7(to) = H(t,)eX(ti) + v(t,) + d(ti)n(ti, O)v (2.42)

With these defimtitns in hand, the next step in the derivation is to find an expression

for e(t,) in terms of known model parameters.

3. Step Three, Define expressions for e°(ti) and el(ti)

The method for develophig the expressions for either e(ti) will be demonstrated by

developing el(t;). Using the expression developed for e'(tj) in Equation (2.40), a new

expression can be developed by using Equations (2.35), (2.28) and (2.20). This new

expression, Equation (2.43) puts el(ti) into a recursive form:

e (ti+0) = '(ti+, Wt)e'(t4) + Gd(ti),,d(t,) - D(ti+,, ti)K(tj)'yt(t,) (2.43)

In the above equation, K(ti) represents the Kalman filter gain at time tj as de-

fined in Equation (2.19). Equation (2.43) can be further expanded by substituting

Equa.tion (2.42) for - 1 (ti). After several algebraic simplifications, Equation (2.43) is

rewritten as,

fl(tj+1 ) = *t(ti+.,Ui)[l- K(ti)H(t:)]e(t4) + Gd(ti)wd(ti) -

,t(tj+, t.)K(t,)[v(t4) + d(Ij)n(t4, O)v] (2.44)

This is the desired form for el (ti), A similar derivation yields the following expression

for e0(t;),

(,)= 4'(t 1,+~t,)[l -- .K(ti-)]°(t,) ± Gd(t,)wd(ti,)-
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'P(t,+t, t,)K (ti)v(t,) (2.45)

The two equations derived in Step 3, Equations (2.44) and (2.45), will be used later

in the derivation to attain the final form. of (ti, 0).

4. Step Four Derive a new expression for "y(ti)

This is the citiciaJ step in the derivation. The goal is to develop a new expression for

-Y'(ti) in term,, -;f -y(ti) and other terms that are readily available from a Kalman

filter. To acconn,;Ish this we start by rewriting Equation (2.38) in the following form,

71(t,) = <1(t,) + g(t,, 0)/ (2.46)

whei,, g(t,, 19 is a functioni of only parameters available from the EKF. Let g(ti,0)

be of the form,

g(t,, 0) = H(ti)f(ti, 0) + d(t3 )n(t,, 8) (2.47)

It is therefore necessary to find an expression for f(t,, 8) that will satisfy the above

equations. This expression is found by substituting in all the other known quantities

into Equation (2.46). Expressions for y'(t,) and y°(ti) are found in Equations (2.41)

and (2.42):

H(tj)e 1 (t4) + v(t,)+

d(ti)n(ti,,)V = HI(t,)e 0 (t,) + v(t4) +

[H(t,).,(t,, 0) + d(t,)n(t,, O)]v (2.48)

After cancellation Equation (2.48) can be rewritten in the form,

f(t,, 8) = -[C (t4) e°(t1 )] (2.49)
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It is now beneficial to put Equation (2.49) into a recursive form for f(ti, 0). Restating

Equation (2.49) for t = t1+1 yields the following expression,

f(t,+1 , 0) = [el(tj•) - e0(ti++)] (2.50)

Now the terms on the right side of Equation (2.50) are expanded so that f(ti+1 , 0) be-

comes a function of f(t,, 0) and other known quantities. Equations (2.44) and (2.45)

from Step Four provide. expressions for e1(t, t,) and e0(ti+ 1).

f(ti÷+,6) [•O(t4.t, ti')[I - K(tI)H(t,)jh'(ti) + Gd(ti)wd(t,) -

1)

"$(ti+1, ti)K(ti)[v(t,) + d(ti)n(ti, O)v]) -

- K(tj)H(tj)]el1 (ti) + Gd(ti)wd(t4)

(P(t,+ , t)K(t)v(tJ))I (2.51

This expression can be simplified to yield,

f~ti•,O)-- •{•(t+,,ti)[1 - K(tj)H(t,)](e1(tj) - e°(ti)) -

$(tj+1 , t4 )K(t4)d(tj)n(t4, 6)v]) (2.52)

Now Equation (2.49) is used to complete the recursive formula for f(t'+1, 0).

f(t,+1, 0) = D(t,+1 , t,)[I - K(tj)H(t,)]f(t,, 0) - *.(t+,+, t,)K(tJ)d(t,)n(t,, 6) (2.53)

Therefore at this point, recursive equations have been developed for residuals of the

two hypotheses, no failure and failure:

H 0 0= 7 o(t*) (2.54)

Ki : y(t1 ) = y°(ti) + g(ti, O)v (2.55)

The expressions for 9 (t1 , 0) can be developed from Equations (2.47) and (2.53).

5. Step Five The Likelihood Ratio
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Now that expressions have been developed for the residuals of the two hypothesis,

the likelihood ratio needs to be established to determine which of the hypotheses the

residuals actually match. We derive the likelihood ratio from the knowledge that

both hypotheses residuals are Gaussian random variables that are independent in

time [15]. We now define the following probability ratio:

L(ti, 0, 1) = P(Y(to), YI(to+i), 7f(to+2) ....... -(t)IH 1 , 0, v) (2.56)
P(7 o(), ,Y(t ) (to+. ....... y(ti)IHo)

L(tj, 0, 1/) 772 1-I','-o[-W I 2 - r') A " - '• °
l 9- T I/' _A(t.)l _.

The prodict functions in Equation (2.56) represent the product of the probabilities

at each measurement update from time, 0, up to and including the current time,

ti, To simplify Equation (2.56), we use the log-likelihood function in place of the

likelihood funiction. This is accomplished by taking the natural log of both sides of

Equation (2.56). After several algebraic simphfications, this equation becomes,

( L(t•,0, t')) v >-• [y,(t)TA(t.)-'g(t., 0)] -- 2 t t
tn--2 tn=O

Similar to the product notation of Equation (2,56), the summation in the equa-

tion above repres,-nts the sum of the terms at each measurement update from time,

0, up to and including the current time, ti. This notation continues in Equa-

tions (2.58), (9.59), and (2.67) This equation is rewritten in the form,

Itn.(L(t,, 0, v)) = zA(t,, 0) - -v 2 S(t,, 0) (2.57)

where 'k(ti, 0) aad S(t,, 9) are defined below.

(ti, 0) = [g(t, 0,)T A(t.)-(t.)] (2.58)

t,=

S(tj, 0) = Y [q(t., O)TA(t.)-1g(t., 0)] (2.59)
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Now it is necessary to remove the dependence on v from Equation (2.57). This is

done by finding the Maximum Likelihood Estimate(MLE) of v for Equation (2.57).

This is accomplished by taking the derivative of Equation (2.57) with respect to the

variable v and setting it equal zero:

d[lmn(L(t1 , 9, v))] = %P(ti, 9) - vS(t,, 0) = 0
dv

S= q(ti, 0) (.0
S(t,, 9)

Now that the MLE of v has been found over the interval 9, substitute this value back

into Equation (2.57). This yields the following maximum likelihood equation:

hn(L(t,, 9, v)) = 1(t,,9O) = 2 (t' ,9)
2S(ti,0) (2.61)

Now the expression for 1(ti, 9) is maximized over 0 to obtain the maximum likelihood esti-

mate. This is the final form of the Generalized Likelihood Ratio test. If 1(ti, 9) exceeds a

predetermined threshold T then a failure of type n(ti,9) will be declared on the measure-

ment specified in d(ti). The GLR magnitude estimate of this failure will be C, as defined

in Equation (2.60).

2.3.2.2 Development of the GLR Matching Filter. While the GLR al-

gorithm defined in the previous section is designed to function as a stand-alone failure

detection and isolation algorithm, the GLR matching filter algorithm performs a more

limited role within the MNRS model. The GLR matching filters will be provided with

failure detection and isolation information from the bank of Chi-Square tests that are run

on each NRS filter. Given the failure information from the Chi-Square tests, the GLR

matching filter must then identify the type of failure. Specifically, the GLR matching filter

algorithm will attempt to differentiate between step and ramp failure offsets. There is no

GLR failure model available for the noise offset, therefore a Generalized Likelihood Ratio

is not developed for the noise offset. Fundamentally this is done by comparing the results

of different GLR matching filters, and choosing which best fits the residuals. Each GLR

matching filter can also estimate the magnitude of the failure. This section derives the
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GLR matching filters from the previously defined GLR equations, and explains how the

matching filters accomplish failure identification and estimation. Before this can be done

however, the information provided by the Chi-Square test must be defined.

The first piece of information is the identity of the failed measurement signad. The

knowledge of which measurement update is failed, allows the GLR. vector d(ti) to become

the fixed vector dx(ti)(subscript X signifies dependence on Chi-Square failure information).

The second piece of information provided by the Chi-Square test is its best estimate of

when the failure occurred. This estimate is based on experimental analysis of Chi-Square

dctection delay. The knowledge of the Chi-Square estimate allows the variable 0 to become

the known estimate Ox.

These two simplifications greatly reduce the computational burden of the GLR al-

gorithm. In fact the extra information reduces the GLR equations into simple matching

filter equations. Rather than having a maximum likelihood estimate over the variable 0,

the GLR equation reduces to the following;

l,•o,412 -t,

ot=2sx(t,,) (2.62)

with dx(ti) and 9,, predetermined by the MNRS Chi-Square tests. The GLR equation has

now been reduced to a function of only time, ti.

To implement the failure type identification, two GLR matching filters are con-

structed, one for a step bias and one for a ramp offset. These filters are unique because

they are each driven by two different failure models, nt~p(tjk) and nramp(ts,O×). The

definitions for the different failure models are provided in Section 3.4.3. It is important to

note that the Chi-Square estimate of the failure time, O., does not take into account the

detection delay inherent in the step and especially the ramp offsets. Compensating for this

failure detection delay in the failure models is addressed in Section 3.4.5. Continuing on,

for each of the two failure models, n,,t and nramp, a GLR. matching filter is now defined

as,

step( it(2.63)2S-,1p(t4 , x)
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lranp ,ti 9ý) (2.64)

2 sramp(iii, )

where the first equation is a function of iatep(ti, 6,,) and the second, equation is a function

of frarnp(ti, Ox). A ratio of these two equations is defined as T(ti),

T(t,) = lrarp(ti ,y) (2.65)l3tep( til ()x)

This equation simplifies through cancellation and use of Equations (2.58),(2.59),and (2.61)

to reach the following result,

T(t;) = ! F Ox) (2.66)Cte•p(ti, O X)Sramp(tj , 0×)

T t)= mt [t )A(t.) - (t1])) El.

( -,.= [g 8 t•,(tn, 9 )TA(t )-l y(t,•)]) 2  t] ..=j [gr np(tn, Ox)TA(tjf gr •,:.(t,f , A2]

(2.67)

where the subscripts, ramp and step, correspond to a function that has the respective failure

model as an input. Similar to the original GLR algorithm, the ratio of matching filters,

T(ti), will be compared to thresholds to determine which type of failure has occurred. If

the failure is a ramp bias, the ratio of matching filters should be much greater than the

one, therefore T(ti) should be much larger than one. Likewise T(t,) should be much less

than one if a step bias has occurred. Yet if the failure is additive random noise, neither of

the failu.re models should miatch the fUailure, and T (tI) sIhLcLU idreLLmaii dCtVViu.Aima1tet'y onie.

Therefore two failure type thresholds will be established for T(ti),

J Ramp Bias if T(tj) > T1

Failure Type = Step Bias if T(t1 ) < T2 (2.68)

Noise Bias otherwise

The Tj >> 1, ramp bias , and T 2 << 1, step bias thresholds are experimentally established

thresholds. With the proper choice of thresholds the T(tj) will accurately determine failure

type.
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The magnitude of the failure type is determined from Equation (2.60). "h, equation,

calculated for both step and ramp failure models, will estinate the size of the failure at

each point in time, ti > 0,. The determnination of which estimate is valid depends on ,lhe

outcome of the ratio between matching filters, T(ti). By using Equations (2.60) and (2.66),

accurate estimates can be made of both the size of a step bias, and the slope of a ramp

offset. Unfortunately, since there is no failure model for the noise bias, an estimate of the

magnitude of a noise bias cannot be determined.

This section has defined the role of the GLR. algorithm for the MNRS FDIR system.

The GLR has been modified to use predetermined information from the MNRS Chi-Square

test to ease computational burden and increase the likelihood of accurate estimation. While

theoretically the GLR matching filters should effectively accomplish failure identification

and estimation, past AFIT research has only had limited success with the GLR algorithm.

Therefore, a second matching filber algorithm is also developed to compare with the GLR

matching filters.

2.3.3 The Chi-Square Pattern Recognition(CSPR) Matching Filter. The CSPR

filter identifies consistent trends in Chi-Square magnitude plots that can distinguish failure

type. The filter is based on the premise that step and ramp offsets affect the residuals in

distinct manners that are obvious in the Chi-Square results. By examining the Chi-Square

magnitude data over the time of failure, the type of failure is determined. Like the GLR

algorithm, it is assumed that the Chi-Square estimate of the failure and the identity of the

failed measurement are known. To understand the implementation of the CSPR matching

filter algorithm, the scope of the filter's theoretical development needs to be clarified.

The CSPPR algorithm has been developed through post-process examination of the

impact of failures on the residual and Chi-Square plots. These Chi-Square results and the

results of past FDIR EKF work imply that the failure type can be determined by the shape

of the Chi-Square test over the time of failure [2, 5]. This thesis in no way implies that the

CSPR algorithm can be used to identify failures for all EKF models. The CSPR filter has

been designed for the specific NRS model developed at AFIT. Fundamentally, the CSPR

filter is an ad-hoc identification algorithm that exploits the engineering insight developed
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through rigorous failure testhig of a filter model. The criteria for distinguishing the failure

type in the residuals is presented in Section 3.4.4.

2.3.4 Threshold Selection and Filt-r Tuning. Threshold choosinig is a trade-

off betweeni several performance parameters to gain the best FDl for the system. The

performance parameters that must be balanced are false alarm rate, detection delay, and

missed failures. If the threshold value is high, the false alarm rate will he low, while

the detection delay and the missed failure rate will be higgh. If the threshold value is

lower, the false alarm rate will increase, while the detection delay and missed failure rate

wil" decrease. The system dynamics must also be taken into account when choosing a

threshold. A highly dynamic system will require a higher threshold than a benign system

to maintain an acceptable false alarm rate. In the end, a balance is achieved between the

performance parameters that yieldis the best possible FDI for the problem at hand. The

threshold choices made for the MNRS are discussed in Chapters III and IV,

The tuning of the Kalman filter can also bc varied to increase FD! ability. By Mtering

the tuning of the Kalman filter, the residuals can become more sensitive to failures. The

effect of changing the tuning can be seen in Equation (2.29). If the value of R were to

decrease, the magnitude of the Chi-Square test would actually be increased since the inverse

of the covariance is used in the Chi-Square computaton, Equation (2.30). Therefore, it is

possible to make a system more senusitive to failures by adjusting the tuning. Yet by altering

the tuning, the filter will no longer be constructed to yield the optimal navigation solution,

i.e., best state estimates. Therefore varying the tuning parameters is not implemented to

improve the ability of the FDI algorithms. This research maintains the most accurate

navigation solution from the MNRS model.

2.4 Chapter Summary

Chapter II presented the Kalman filter, the Chi-Square test, and the GLR test in

support of the MNRS failure detection and isolation algorithm. The first theory presented,

tie Kalman filter theory, will be more deeply explored in the beginning of Chapter III with

the presentation of the navigation models. The use of the two failure algorithms will also
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be explored in Chapter IlI with a description of the implementation of the MNRS FDI

algorithm.
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III. Navigation and Failure Models

This chapter describes the models used for the computer simulation of the MNRS

FDIR algorithm. The chapter begins with a high-level description of the MNRS and its

major sub-components. Following this introduction, the NRS filter is described. The

description, of the NRS filter focuses on the implementation of the navigation models in

the MSOFE software [13]. After the NRS filter description, the implementation of the

failure models is presented. The chapter concludes with a discussion of the MNRS filtei

selection algorithm.

3.1 The MNRS Model Description

Figure 3.1 reviews the major sub-components within the MNRS. To the far left in

Figure 3.1, the GPS and RRS measurement sources can be found. These two navigation

•ids dist.ribute unique sets of measurement information to each of the ten NRS extended

Kalman filters. Table 1.1 provides an exact list of the measurement signals each NRS filter

receives. The navigation solution comes fr'om the INS. Using the information Porn the

GPS, RRS, and INS, each NRS filter calculates its best estimate of the navigatioa errors

made by the INS. The ten chi-square tests monitor the residuals of all the NRS filters and

pass on the best navigation solution from the bank of NRS filters. When th,. chi-square

test declares that a measurement signal has been corrupted, the navigation correction

switches to the unaffected filter. The Chi-Square test also passes on the identity and the

estimate of failure time to the matching filter. The matching filter then estimates the type

of failure. This brief overview shows how the INS, the GPS receiver, the URS receiver,

the NRS EKFs, the chi-square tests, and the matching filter all work together to produce

a navigation solution that is robust against failures in the GPS and RRS measurement

signals.

While the minjor focus of this thesis is the FDIR capability of the MNRS, the quality

of the navigation system fundamentally rests on the ability of each NRS filter to provide an

accurate estimate of the errors committed by the INS in calculating its navigation solution.

3-1



Corrected Nay igtaion

Cootitnuous Time Navigation Solution Solution, Robust to single

INS ----' --. fi•

The best cstdnate of the errors committed Identity of the filter

providing the best
nNvigoticet correction

Banno

S- / Filters different NRS filte't Eatimste of failure

K Diserete Time time. and the identity

Mealuxta-l lt Signaals, of suthe ui t silge t

these signals provide eorrctsga

1o0 uniqe sets of

men~urneeudtso

the 10l NRS fitters thn

Residual Land state space
isformation from the pnmsry fitter

The mstcbing filter estimateI

of the typ of failure .mfIu..asa.i 1

Figure 3.1 Overall MNRS Description

The next section will fully develop the NRS extended Kalman filter equations anid their

implementation in the MSOFE software.

39.2 The NRS Computer Model

The information and data presented in this thesis has been accomplished entirely

through computer simulation. The computer modelling of the NRS system is divided into

two portions, the truth mode! and the filter model. The truth model is a conputer-generated

real world for the NRS filter. The truth model generates such things as the measurement

updates for the NRS filter, the true flight profile of the aircraft, and a state variable baseline

for evaluating filter performance. The truth model consists of 95 error states about their

nominal values. The filter model represents the NRS model in its functional form. The
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filter model is a 15-state extended Kalman filter that has been developed through order

reduction of the 95-state truth model.

The block diagram, Figure 3.2, explains how the filter and truth models interact

in the MSOFE computer simulation. PROFGEN provides a simulated flight profile and

ORBIT generates GPS satellite constellation positions. With this information, the truth

model is able to simulate the real world INS navigation solution x + bx+.s and generate

the real world GPS and RRS measurements, R0 ps and R 5Rs respectively. The NRS filter

in Figure 3.2 is represented by the extended Kalman filter block. The corrections from the

NIRS filter are subtracted from the INS navigation solution to generate the best possible

navigation solution available, i = x + bx - bi&. Now that the MSOFE implementation of

the NRS filter has been explained, the truth and filter models for the GPS, RRS, and INS

subsystems will be described.

X

xbux÷bx - 5i"
ISISxX.6 INS INSINS 5I÷N

X+

+7

RRS.. . On•'at n EXTENDELI-L I EM

GPPSS
+g P INt FloRI Riagr

3 - N +
P R

PROFOEN ]- § True Ran-go

ORBITU

Figure 3.2 Truth and Milte' Model Block Diagram
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3.3 NRS Model Description

This section presents the truth and the filter model EKF propagation and measure-

ment equations (Equations (2.9) and (2.11), respectively). The presentation will be divided

up by navigation subsystems. First the INS portion of the equations will be presented, then

the RRS, followed by the GPS. Furthermore, before the different navigation subsystems

are individually described, the high-level state and measurement equations are provided

for the NRS filter followed by the truth model.

Equations (3.1) and (3.2) show how the different navigation subsystem models coin-

bine to form a single NRS filter model:

FINs, 0 0Wts

fij = 0 FFRRS, 0 6x 1 + WRRSf (3.1)

0 0 FGPs, uGPS,

HINSj VIjNS1

z!f H1 RRSj 6x 1 + VRsj (3.2)

1
-GPSI VGPS!

As stated earlier, the overall filter model consists of 15 states; 11 INS, 2 RRS, and 2

GPS states. Table A.5 in Appendix A provides a description of the 15-state vector, Oxf,

implemented in the filter model. References to further descriptions Of the dub-matrices

in the filter equations can be found ini Table 33.1. IL bitould be! ii-WUl ha lteu bId Ue uauuetric

altimeter and velocity aiding measurements are considered to be INS measurements, while

thej GPS and RRS range measuremen)ts are the respective updates for the GPS and RRS.

Ihe propagation and measurement equations for tWe NRS truth model is presented

in similar fashion below:

Ffiiter FINS,, 0 0 WFilter

0 FINs 12  0 0 6+ WINs, (3.3)
0 0 1  0 W0Bs,

0 0 0 Foeps, -Was, .
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Table 3.1 Refeiences for the Sub-Matrices of the NRS Truth and Filter Models
Filter Model Location of Description f Truth Model r Location of Description

FTINSt Section 3.3.1.3 FIN, ,,,_ Section 3.3.1.3,3.3.2.1,3.3.3.1
-_ _ _ _---FINS,, Section 3.'.1.2

- _ _,_- FINS,- Section 3.3.1.2
FRRS, Section 3.3.2.2 FRRS, Section 3.3.2.1
FGPSJ Section 3.3.3.2 Faps, Section 3.3.3.1
WINSt Section 3.3.1.3 WINS, Section 3.3.1.2
WRRSJ Section 3.3.2.2 WRRSt Section 3.3.2.1
WaPSf Section 3.3.3.2 WGPst Section 3.3.3.1

HtNSf Section 3.3.1.4 HINSI Section 3.3.1.4

H1RR.5 Section 3.3.2.3 HRRS, Section 3.3.2.3 -
"HaGPS Section 3.3.3.3 HGPS, Section 3.3.3.3 1

HINS, 1VINS,

•z, HRRS, 6xt + VRRS, (3.4)

"HGPS, VGpS,

The N1{S truth model consists of the original fifteen states of the filter iiudel(rtepie•etted

by FFilter and u,'Fiter), augmented by additional INS, GPS, and RRS states. The total

number of states for the three navigation subsystems is 95; 39 INS states, 26 RRS states,

and 30 GPS states. Tables A.1-A.4, in Appendix A give a full description of each individual

state of the truth model. Also Tables B.1-B.5 and Tables B.6-B.7 in Appendix B have a

complete listing of the components of the F and the Q noise strengths associated with the

W matrices in Equation (3.3).

While the first fifteen truth states of the filter model are nearly identical to the

first fifteen states of the model, there is one crucial difference. The filter model dynamics

driving noise and measurement noise do not correlate with those of the first fifteen states

of the truth model. The filter model noise values have been altered to achieve good tuning

against the truth model [9]. The following sections will provide a detailed presentation into

the exact make-up of the truth and filter model propagation and measurement equations

for all three navigation subsystems.

3.3.1 The Inertial Navigation System(INS), Model. This section presents the

truth and filter models used for the INS. The INS model is a strapped-down wander
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azimuth system that senses aircraft motion via gyros and accelerometers and is used as

the primary source for navigation. The INS model has been derived from the Litton 93-

State model [4]. First, the original 93-state Litton model will be presented, followed by

the reduced-ordered 39-state truth and li-state filter models. After the truth and filter

state equations have been defined, barometric altimeter and Doppler velocity aiding INS

measurement equations will be presented.

3.3.1.1 The 93-State LN-93 Error Model. The 93-state Litton INS MSOFE

computer model has been generated by the Wright Labs Avionics Directorate Research

Group. Their development uses both past AFIT research and Litton documentation to

fine tune past modelling efforts [4, 14, 18, 19]. The 93-state model generates a high num-

ber of documented error sources that are found in the Litton wander-azimuth LN-93 INS.

These errors are described using six categories of states:

6X 6< 6T 64 64 64 6 IT (3.5)

where 6x is a 93 x I column vector and:

6x, represents the "general" error vector containing 13 position, velocity, attitude,

and vertical channel errors.

6x, consists of 16 gyro, accelerometer, and baro-altimeter exponentially time-

corrrelate errrs,c and "trnA"' staten. Phiee states are mn- .. , orders

Markov processes in the truth (system) model.

6x 3 represents gyro bias errors. These 18 states are modeled as random constants

in the truth model.

6X4 is composed of the accelerometer bias error states. These 22 states are modeled

in exactly the same manner as the gyro bias states.

6x 5 depicts accelerometer and gyro initial thermal transients. The 6 thermal tran-

sient states are first order Markov processes in the system model.
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6X6 models the gyro compliance errors, These 18 error states are modeled as biases

in the system model.

The 93-State Litton model state space differential equation is given by:

,±., F11 F12 F13 F14 F15 F16  6Xa w.

6±2 0 F 22  0 0 0 0 6x2  w2

6±s 0 0 0 0 0 0 6x4 0S = 1 + (3.6)
6±4 ~ 0 0 0 0 0 0 6x 4  0

[.ý 0 0 0 0 F55 0 6x 5  0

bi6 0 0 0 0 0 U0 6T 6  0

A full description of the sub-matrices for this equation is given in the Litton LN-93 manual

[4]. This large state model represents the most accurate model available foi the LN-93

navigation errors.

3.3.1.2 The 39-State INS Truth Model. While the 93-state model is a very

accurate representation of the INS error characteristics, the high dimensionality of the

state equations makes the model impractical for failure detection analysis. Previous AFIT

theses have demonstrated that reduced-ordered truth models can be used in place of the

93-State model without losing a significant degree of accuracy [6, 14]. Therefore the INS

truth model has been reduced to a 39-state model. The reduced-ordered model retains

only the truly essential states from Equation (3.6). The truth ioudel state space equation

is defined in Equation (3.7):

I6, 1 F1U F1 2 F 1 3 F14 6X, [w)
S0 F22  0 0 z2  W, (3.7)

6l3 0 0 0 0 6x3

6±4 0 0 0 0 6x 0

It should be noted that the INS truth state vector 6x, is a 39-state vector. The four

components of 6x do not directly correlate to the first four components of the 93--state
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Litton model. For a complete listing of the 39 states and how they relate to those in the

Litton model, see Tables A.1 and A.2 in Appendix A.

3.3.1.3 The 11-State INS Filter Mod'l. 'hE IN"' filter model retains the

essential states from the 39-state truth model. Througih pa-t AFIT research, the 11-

state INS filter has been shown to perform adequately wheit given frequent GPS and RRS

measurement updates [14, 19]. Table A.5 in Appendix A sh)v,' the 11 states used for the

INS filter model. Dynamics driving noise has also been addec to every state to compensate

for the order-reduction of the model. The final INS filter state dynamic driving noise values

can be found in Table B.8 of Appendix B.

3.3.1.4 INS Measurement Models. The two INS measuiements that are

used to update the filter are the barometric altimeter and the Doppler based velocity.

Both these signals are used to correct for inherent instabilities in the filter. First the

altimeter measurement will be presented, followed by the Doppler based velocity measure-

ment. It should be noted that since the NRS filter is an error state filter, it is necessary to

develop difference measurement update equations for all the measurements. The altime-

ter measurement equation is based on the difference between the INS-predicted altitude,

AltINs and the barometric altimeter-predicted altitude Altbar:

tZAIt = AItINS - Altb•b (3.8)

Therefore it is necessary to develop the two separate measurement signals that will be

differenced to attain the proper measurement update for the error state filter. The INS-

predicted altitude is the sum of the true altitude, h,, and the INS error in vehicle altitude

above the reference ellipsoid, 6h. The barometric altimeter reading is modelled as the sum

of the true altitude, h,, the total error in the barometric altimeter, 6h8 , and a random mea-

surement noise, v. The difference measurement update signal is formed in Equation (3.9)

by :.ubtracting the INS-predicted altitude from the barometric altimeter altitude:

6 ZAlt = AltliNs - AltBar
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= [h, +t6h] - [ht + hB +]

= 6h- 6hB1-B-v (3.9)

A perfect Doppler system provides velocity aiding to the INS based on assumption 12

in Chapter I. The Doppler measurement has been added to lend numerical stability to the

NRS filter. A simple model is assumed for the Doppler measurement. All three channels

(north, east, and up) are represented by the difference between the truth state velocity

error, WV,, and the filter state velocity error, 6V½, as shown in Equation (3.10).

6zj = 6Vt, - 6½V where i = x, y, z (3.10)

Although this model seems somewhat unrealistic, in that it provides the filter with an

ideal difference measurement for velocities, it does not skew the performance of the FDI

algorithm because these measurements are not used in the FDI calculations. The simplistic

model is being used until a more accurate model can be developed. Use of this model also

allows the results of this thesis to be directly compared to past AFIT research [14, 17, 18,

19].

There is no difference in the form of the INS truth and the filter model measurement

equations. Both use the same states to create the INS difference measurements. The

only distinction lies in the measurement noise values for each of the two equations. The

truth and filter measurement noise values are located in Table B.9 of Appendix B. This

completes the presentation of the INS truth and filter state equations as well as the INS

measurement equations. The next section will develop similar equations for the ground-

based transponder system used in this thesis.

3.3.2 The Range/Range-Rate Systern(RRS) Model. The RRS system is the pri-

mary CIGTF ground-based transponder system that has been installed for testing and

evaluating navigation equipment [14, 18]. The RRS interrogates the transponders, collect-

ing the electro-magnetic (EM) signals they emit. These signals give the user the range to

the transponder. In this thesis, the navigation information passed to the NRS filters is the
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range to five transponders and the known location of those transponders. As done with

the INS models, first the RRS truth model state equations will be presented, followed by

the filter model state equations, and finally the measurement update equations.

3.3.2.1 26-State RRS Truth Model. The RRS truth model contains 26

states to simulate the real world errors that exist in the transponder system. The first two

ecror states are common error states, i.e., these errors are common to all of the transpon-

ders. The two common states for the transponders are a result of errors in user hardware.

They appear as bias terms and are modeled as random constants. These state equations

are given by:

"b 0 0J{ R} (3.11)

bivb L0 0 bfvb

where

6R, - Range error due to equipment bias
Sb = Velocity error due to equipment bias

The initial conditions for the truth model states were chosen to be consistent with CIGTF

and previous AFIT research [11, 17, 18, 19] and are:

I } o](3.ý12)4bg (to) 00_o

and

,6R 6(t0) if= 2 i (3. 13)
0 10- 4ft 2 /sec 2  

(

Along with the two common error states for the transponder, each of the transponder

signals has four error states to model the unique errors of that specific transponder unit.

These errors represent the error in the surveyed position (x, y, and z) of the transponder's

location and the atmospheric propagation delay between the transponder and the receiving

aircraft. The position errors are modeled as random constants and the atmospheric error

is represented by a first order Markov process. The state equations for these error sources
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are shown below where i represents the various transponders (1-6):

1 0 0 0 J0 W" wI ,

0 0 0 0 0 + + . (3.14)

I 0 0 0 0 zR ]T
000-300 1see 6Rt, Warm,

The initial conditions for these states were chosen to be consistent with previous AFIT

research [14, 17, 18]. The initial mean and variance for the truth model are defined below.

.:,viZ,atm(to) = 0 (3.15)

25ft 2  0 0 0

PV,yoatrm(to) 0 25ft2  0 0 (3.16)
0 0 25ft2  0

0 0 0 loot0 ]

The truth model dynamics driving noise that has been implemented for the transponder

error states was provided by Holloman test facilities through past AFIT research [14, 17,

18, 19]. The mean and variance of the dynamic driving noise are:

E {Woy,,,atm,(t)1 = 0 (3.17)

0 0 0 0

E {W' ,amT)Wa ' + r)} 6 (r) (3.18)
0 0 0 0

0 0 0 0 -

300-&

respectively, with aatrm 1 0 -1OLt-.!. Therefore the truth model will coILSist of 26 states, two

common user error states plus six sets of four unique transponder error states. It should

be noted that the truth model as simulated will propagate six sets of unique transponder

error states, yet only five are used by each NRS filter. The extra state has been maintained

to ease the implementation of the MNRS model. However it is important to understand
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that each individual NRS filter receives only five RRS transponder signals. This completes

the description of the RRS truth model. Next the RRS filter model will be presented.

3.3.2.2 The 2-State RRS Filter Model. Research at AFIT has shown that

retaining only the first two states, which are common to all the transp mnders, provides good

filter performance [19]. These states are the range and velocity errors due to equipment

bias and are represented as 6Rb and 6by in Equation (3.11). To compensate for the removal

of the other states and to prevent EKF gains from going to zero, dynamics driving noise

has been added to each of the two RRS filter states.

ro? 01 01R
6V6 J a] b~ .t',,(.9

The initial mean and vajriance for the filter model is assumed to be zero for these two states.

Filter tuning accounted for the exact magnitudes used for the strengths of the dynamics

driving noise, WbR, and w6,. The final values implemented can be found in Table B.8 of

Appendix 13,

3.3.2.3 RRS Measurement Model. Each NRS filter will receive five different

measurement update signals from the five different traixspo.aca incations. This section

describes the measurement equations for the RRS transponder updates. Each equation for

the transponder updates is iueudcai in fori. First terata inouci xueaiurenielit equalori

will be fully developed, followed by a brief description of the reduced-order filter model

measurement equation.

The RRS difference measurement is generated by forming two independent measure-

ments of the range from the transponder to the aircraft. The EKF then takes the difference

of these two measurements to form bz. The two range measurements differenced are the

INS-computed range (RINs) and the RRS-calculated range, (RRns):

bZRRS 1
=INS -

1 1 RRS (3.20)
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The RRS range measurement, RnRs is the sum of the true range from the transponder to

the aircraft and the errors inherent in the measurement signal:

RnRS -- Re + 6R.trn + MRb + v (3.21)

where

R = RRS range measurement, from transponder to user
R = tiue rang&, from transponder to user
6 Rat, = range error due to atmospheric delay

Rb = error due to equipment bias
v zero-mean white Gaussian measurement noise

The second source of range information is provided by the INS. The NR.S takes the

INS computed position, Xu and subtracts the known transponder nosition, XT. Equa-

tion (3.22) shows the calculation of the R1 NS:

i XU "T,

R, NS X - r = 1 - 1T (3.22)

It should be noted that both X1 and Xu represent position vectors in the earth-centered

earth-fixed (ECEF) frame. While Equation (3.22) provides the second source of transpon-

der range information, this equation is not a function of the EKF error state variables.

Therefore it is necessary to rewrite Equation (3.22) in the following form.

RINS = v/(Xu - x,) 2 + (yu - y_) 2 + (zr -- Zr)l (3.23)

Equation (3.23) is equivalent to Equation (3.22). This new equation will now be ap-

proximated to generate a relationship for RINS that is a function of the EKF error state

variables. Based on assumption 11 from Chapter 1, Equation (3.23) can be approximated

and rewritten in terms of the true range and a truncated first-order Taylor series, with
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perturbations representing the errors in Xu and XT:

BINS = 9 X ) +-U
axU +(X x-..,

+ DRIN5+X'4, X" ) I K • 6XX (3.24)a+ T~ (x, )..

The final expression for BINS, Equation (3.25), is found by evaluating the partial deriva-

tives in Equation (3.24). It should be noted that Equation (3.25) is a function of 6x+,,

6y&, 6zu, 6xr, 6by, and 6%. These variables can be directly transformed into the state

variables in the EKF truth state equation.

Pis E- [-T x . - ___y_ I -6'
1S IzR s1J~

+ -- -j6x 7 . + [Ii BIN by, +~ ± - z-j I (3.25)

The actual difference equation, Equiation (3.26) is Ynow formed by taking the difference

between RBINs and BRRS

0 z-1iRs, BINS -"Rs

F [- ul x - [Yb..ytl ,, - 6Z

Ia,-xI]. x ± [T77r].6, + , Z..

- [], .ob, - [1] 6 b - v (3.26)

The equation for the difference measurement, Equation (3.26), is the complete form of

the measarement for the truth model. In the above equation, 4xu, byu, and flzu can be

translated through an orthogonal transformation into the state variables (,66, 6ý., and 60,

defined as truth model states in Table A.l of Appendix A [1].

The actual measurement equation that is used for the reduced--order NR.S filter does

not retain the terms bx, . , 6y.,., and 6z2., since the reduced-ordered model does not contain

these states. Theiefore with those values set to zero >juation (3.27) is the filter model
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measurement equation for the NRS filter.

6 zRRSJ RINs - R RR-

XL -X ]U [Y]--yu z [ Yu
j~ IL'z IRI, I 6J z

- [11bRb - V (3.27)

The filter measurement noise strength, R will be tuned to attain adequate performance

despite the reductien in order from the truth model and the Taylor series appt.oxitnation.

Table B.9 in Appendix B contains a complete listing of the measurement noisE values

for both the filter and the truth model models. This ends the description of the RRS

navigation subsystem. Next the GPS navigation equations are presented.

3.3.3 The Global Positioning System(GPS) Model. The third and final navigation

system is based on EM signals transmitted from orbiting GPS satellites. Although similar

in concept to the RRS, the GPS is modeled somewhat differently. This model has been

developed through research at AFIT. and many of its fundamental concepts are addressed

in a variety of sources [7, 14, 17, 18]. GPS is similar to the RRS in that it generates

navigation information by acquiring the range to multiple satellites of known position.

The navigation information passed to each NRS filters is the range to four satellites and

the ephemeris data position of those four satellites [7]. The next three sections will present

all the necessary equations to define the GPS truth and filter models fully.

3.3.3.1 The 30-State GPS Truth Model. There are five types of error

sources that are modeled in the GPS truth model state equations. The first two states

represent the errors in the user clock and are modeled as follows:

J6R?,Ik,, [ o i]J k, (3.28)
bbDku J 0 0 6D,.,kJ

where

bRcgku = range equivalent of user clock bias
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6DIu - velocity equivalent of user clock drift

The initial state estimates and covariances for these states were chosen to be consistent

with previous AFIT research [14, 17, 18] and are:

1?I, t (3.29){ S:czkU(to) 0J

and

Pk(tO) = 9.0 X9.0 ] (3.30)

Because these error sources are a function of the user equipment, they are common to

all the satellite vehicles. The remaining five sources of errors are unique to each satellite

vehicle (SV), based on their individual equipment and their position with respect to the

user. The first SV-specific error source is the code loop error. Although the code loop is

part of the user equipment shared by all the SV's, its error magnitude is relative to each

SV. The second and third SV-specific errors are the atmospheric interference with the EM

signals, as related to the ionospheric and tropospheric delay in the signal's propagation.

The code loop error, tropospheric delay, and ionospheric delay are all modeled as first

order Markov processes with time constants shown in Equation (3.31), consistent with

previous AFIT research [18, 14, 19]. All three are driven by zero-mean white Gaussian

noise with strengths shown in Equation (3.34). The fourth SV-specific error source is due

to inaccuracies in the clocks on board the SV's, and the final error source is based on line-

of-sight errors between the SV's and the receiver. The model for these states is shown in
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Equation (3.31),

-1 0 0 0 0 0 0 hwa 1

5Rtrop 0 -L 0 0 0 0 0 bRtrop Wtrop6Rrp500 Ito

iR 0on 0 0 t 0 0 0 0 6RRi, Wio

6•R~o, 0 0 0 0 0 0 0 6Ro,Ik + 0

S",, 0 0 0 0 0 0 o a oso 0

6 y", 0 0 0 0 0 00 6y, 0

6"L,0 0 0 0 0 00 0 ,

(3.31)

where the initial covariances for the states is given by;

0.25ft2  0 0 0 0 0 0

0 1.Oft 2  0 0 0 0 0

n 0 ,.0f*2  0 0 0 0

Paps(to) = 0 0 0 25ft 2  0 0 0 (3.32)

0 0 0 0 25ft 2  0 0

0 0 0 0 0 25ft 2  0

L 0 0 0 0 0 0 25ftP

and mean values and strengths of the dynamics driving noise are given by;

E {w,,,(t) 0 (3.33)

0,5 0 0 0 0 0 c

0 0.004t 0 0 0 0 0

0 0 0.004 0 0 0 0

E {wo,, (t)w T (t A- r)} 0 0 0 0 0 0 0 ft 2 /ser 6(r) (3.34)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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A quick reference of the truth model non-zero GPS and RRS dynamics matrix components

is provided in Tables B.5 and 13.5 of Appendix B. This ends the description of the 30-state

truth model, Now the filter model will be presented.

3.3.3.2 The 2-State GPS Filter Model. Various research effoits have shown

that two states provide a sufficient model for GPS [14, 6]. The primary argument is that

the errors modeled by the other 28 states are small when compared to the two states

common to all SV's. By adding dy'namics driving noise, Q, and re-tuning the filter, the

overall performance of Ehe NRS can be maintained with the significantly reduced-order

model of Equation 3.35:

:Zýz: I = [ I ]+ (3.35)bh9¢k 0 0 bDcj,, W&o,•

The values implemented for the dynamics driving noise strengthd can be founld in Table B.S

of Appendix P. It should be noted that in the tuning pro..ess, the measurement noise

covariaace values R have also been adjusted to achieve adequate tuning of the filter [9].

This completes the description of the GPS 'liter model. Th'- next section presents the GPS

measurement equations ior both the truth and the filter inodels.

3.3.3.3 CPS Measurement Model, There are four GPS measurement up-

dates, one for each of the satellite range. signal!s receivn.1 by the NRS filter, These lena-

surement updates are once again differmnce measurements similar in structure to the RRS

difference measuiements. First the UPS truth mode! difference measurement will be fully

presented, followed by a brief description of the .iiter measurement. TLe GPS diffemencc

measurement is formed by takiz.g the difference of the INS-calculated pseudorange, PRjjIs

and the actual pseudorange, PRGPS:

6 zGp5 = PRIN,: - PRC's5  (3.36)
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The real pseudorange, PRFps is the sum of the true range from the user to the satellite

plus all the errors in the pseudorange signal propagation.

ROPS = -R + 6R~1 + t 1 trop + /Rio,, + 6R5 ,.1 , + iudI, + v (3.37)

where

RPS = GPS pseudo range measurement, from SV to user
R, = true range, from SV to user
6R 0 j = range error due to code loop error
MtSRiop = range error due to tropospheric delay
bRion, Z_- range error due to ionospheric delay
6RscSk range error due to SV clock error
6 Rucvk = range error due to user clock error
v = zero-mean white Gaussian measurement noise

The second source of a range measurement is the INS itself, PRINS. The derivation of

PRINS parallels that of RLNvs from Section 3.3.2.3. PRINS is the difference between the

NRS-calculated position, Xu, and the satellite position from the ephemeris data Xs. This

difference vector is represented below in the ECEF frame:

PRs X SxU 
Txs

U - = (3.38)

An equivalent form for Equation (3.38) is:

PRitS = x-x) 2 + (yu - y +)2 + (z - Zs) 2  (3.39)

Based on assumaption 11 from Chapter I, Equation (3.39) can be approximated and rewrit-

t'xi in terms of the true range and a truncated first-order Taylor series, with perturbations

lepresentiug the errors in Xu, and X,:

PRINS Z Rt + a Xl (xIxu)(o IX,
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+ ORv,(X;,Xu) • 6XS (3.40)

The solution for RINS is found by substituting Equation (3.39) into Equation (3.40) and

evaluating the partial derivatives to get:

RINs = Z -.;- - d IR- 2. I, .I

+ [ X, X .6x, + L.S-Z 1 16y + 6Zs (3.41)
IRj RINSI ElR+ Ii LIRIMS Ii

Finally, the GPS pseudorange truth model difference measurement is given as:

bz~ps,= RNs - Raps

xs - xI - - Yu z '- ___ ]_

+ rX]-sxu1 bx, + .[b + 6--L].L tR N I• , • • J - •N S L IR,% •s !

- [1],Rc, [1] 6 Rtrop - [1]6R,0o,

- [1] 6Rq., -k [1] 6RUk - v (3.42)

Similar to the RRS truh model measurements, the user position errors in Equation (3.42)

can be transformed into the first three states of the filter or truth model usinig an orthogonai

transformation [1].

The filter model for the GPS measurement updates can be derived in similar fashion

as the RRS filter measurement updates. Since the filter model does not contain the states

for the errors in the satellite position, these terms are removed from the equation. The

filter model measurement equation can therefore be written as

6,ZGf ps 
t

IIs -- Raps

- , -1 ____ x- - [Wly ,tt

- [1• 6RU,, - v (3.43)
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The filter measurement noise strength, Rt will be tuned to attain adequate performance

despite the reduction in order from the truth model and the Taylor series approximation.

The measurement noise variances for both the filter and the truth model equations are

provided in Table B.9 of Appendix B. This completes the description of the GPS mea-

surement equations and the entire NRS filter and truth model equations. More detail can

be found on these equations in past AFIT research [14, 18, 19]. The following sections will

present the failure models implemented in this thesis.

3.4 Failure Models

The models explained previous to this section do not incorporate the occurrence of

failures. This section explains how failures are added to the simulation, and clarifies the

matching filter algorithms. This section begins with a restatement of the exact failures that

are modelled. Next, the necessary changes to the truth model for generating simulated

failures are presented. Finally the two matching filters are defined.

3.4.1 Description of the Failures. This section explains the mathematical models

for the three types of failures: step bias, ramp offset, and increased measurement noise.

The failures are restricted to single failures of a GPS satellite or RRS transponder range

measurement. Doppler failures and altimeter failures are not considered in this thesis to

maintain a reasonable number of multiple models in the simulation. Therefore only a single

.satellite or tran•ispoiider mueauiueiment i affected during any one simulation run. Satellite

3 and transponder 1 have been chosen at random to be the signals altered by the step,

ramp, and noise failures. The relative geometry of all the range measurements is presented

in Chapter IV. Detailed mathematical definitions are now presented for these three failure

types.

The step bias is modelled as a scalar increase in the range measurement of a satellite

or a transponder. The bias will begin at time t1 ,ij, and continue for a length of time,
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t length. Therefore, for all time, ti, the step bias failure is defined as,

J0 if t, < t.1 ai

b(ti) = bk if tf¼.il t• : tf.l d- tlegth (3.44)

0 if ti > trail + t
iength

where

b(ti) = Step Bias Failure
bk Magnitude of the Step Bias
ifai = Initial time of a failure
t len•th = Time duration of the failure

The definition for the ramp offset is similar to that of the step bias. The ramp offset

also begins at time t fpw and continues for duration t le.gth. Yet the ramp offset is a scalar

magnitude that will actually increase during the duration of the failure. Equation (3.45)

defines the ramp offsct for all time ti,

0 if ti < t fil

r(4l) = rk(ti - ti.ra) if t 0al _ 4t ý• t jail + tlength (3.45)

1 0 if ti > t I nil ± t length

where

r(ti) = Ramp Offset Failure

rk = Slope of the Ramp Offset

tfil = Initial time of a failure
t len•th rTime duration of the failure

The increase in the measurement noise failure is inherently different from the other two

failures. The noise failure increases the variance of the pre-existing Gaussian white mea-

surement noise between times, t! al and t fail + t±leth. Equation (3.46) shows how the failed
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measurement noise term is changed to reflect the existence of the failure:

v(ti) if tj < t1 ail

vf(ti) = nkv(ti) if tf1 il 3 _ ti <_ tlaof + tInmgth (3.46)

V(4) if ti > tfail + t tength

where

vj(ti) = Measuren'ient Noise for the Failed Satellite or Transponder Signal
v(t,) Scalar Measurement Noise, No Failure
nk = Strength of the Measurement Noise Failure
,fail = Initial time of a failure
tieng = Time duration of the failure

These three failure definitions define the scope of the failure a.nalysis for this thesis. It is

now necessary to integrate these failure definitions into the previously defined NRS truth

model.

3.4.2 Failures in the Truth Measurement Equation. Up to this point, the truth

model for the NRS filters has been defined without failure occurrences. To test the validity

of the failure detection algorithms, it is necessary to alter the truth model so that failures

will occur. To change the truth model, single failures are added to specific measurement

updates over a predetermined window of time. For this work, all failures occur at time

ti = 2000s, and continue for 1000s (s = seconds).

Failures are added to the scalar measurement update equation for the failed measure-

ment signal. Sections 3.3.3.3 and 3.3.2.3 provide the definitions for the scalar measurement

equations for the satellite and transponder updates, assuming no failure has occurred.

These equations are now redefined specifically for satellite 3 and cransponder 1 to produce

failures in the truth model. Equation (3.47) defines the new scal.-r measurement update

equation for satellite 3:

tZGPS,.. tid -= X - XU 6X, Y. -[ YNý] 6y~, Z5- [ 7-;6>
-_ JRI ,. R,, I

+ L,'6x - rYU-+
JR,+s I. IR,,,I . 6+-23 + -6.
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-[]]•Rt 1 - [1] 6Rrop - [1I6R,o7 .

[1] Rsck - (1]6R•,. - v,(t,) + b(t,) + r(t,) (3.47)

The new terms added to Equation (3.47), b(tj), r(ti), and v1 (ti), are defined in Equa-

tions (3.44), (3.45), and (3.46) respectively. Within the definitions of these three new

variables, the magnitude of the failures is controlled by the scalar variables bk, rk, and nk.

The values used for simulation purposes in this thesis are presented in Table 3.48

The changes made to the scalar measurement equations for transponder 1 parallel

those for satellite 3. The failed transponder equation is defined as,

6ZRRSf,,s,. - [X R- ] *6x - YU by,, - -_ l J *zU

+ ,XT I ] T + [ YI I" 6yT + Z I .I '

- 116R,,,,, - [116Rb - v1 (t,) + b(ti) + r(t,) (3.48)

As before, the failure variables added to the above equation are defined in Equations (3.44), (3.45),

and (3.46). Once again Table 3.2 contains the failure magnitude values, bk, rk, and 7
1 k, for

each of the simulation runs, The magnitudes of the failures are based upon an analysis

Table 3.2 Definition of Failure Variables for each Simulation Run
RIin I PitraType I Mnc,•11l•. i-nt 1 b . tj- I

t • j ....... ____ " t' _________.7. . . . . .. I _ _ . I _-_______ I

Baseline None 0 0 1 N/A N/A

2 Step Bias Transponder 1 800 0 1 2000 1000

3 Ramp Bias Transponder 1 0 1 1 2000 1000

4 Noise Increase Tranaponder 1 0 0 10 2000 1000

5 Step Bias Satellite 3 3500 0 1 2000 1000

6 Ramp Bias Satellite 3 0 4 1 2000 1000

7 Noise Increase Satellite 3 0 0 15 2000 1000

of the impact of the failures on the filter residuals. The failure magnitudes displayed in

Table 3.2 are chosen high enough so that the impact of the failures on the residuals can

be clearly distinguished from failure-free system dynamics, yet low enough not to induce

instantaneou- instabilities in the filter state propagation.
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The changes defined in this section are the only changes made to the truth model.

The changes produce single failures (step, ramp, and noise) in either a single transponder

or satellite difference measurement.

3.4.3 The GLR Failure Models. As defined in Section 2.3.2.2, the GLR algorithm

has been modified to become a simple matching filter. This new function, defined as T(ti)

in Equation (2.58), is referred to as the modified GLR matching filter. The EKF produces

almost all the necessary variables to compute T(tj) in Equation (2.58). However there are

three variables that need to be defined to complete the matching filter description. First

the Chi-Square test must provide the identity of the failed measurement. This allows the

matching filter to predefine the vector d(ti) as d,(ti). Therefore d,(ti) .1 be definted as,

r 1 T

dx(ti) = [SVI SV2 SV3 SV4 TRI TR2 TR3 TR4 TR5
r iT

= 0 0 1 0 0 0 0 J 0 (3.49)

for the satellite failure runs and,

d4(t4) = SV1 SV2 SV3 SV4 TR1 TR2 TR3 TR4 TR5

0[ 0 0 0 1 0 0 0 0] (3.50)

fur transponder iaiiure runs.

The other two variables that must be defined for the GLR matching filter are the

step and the ramp failure models. These models are closely related to the definitions of

the failures in the truth model (Equations (3.44) and (3.45)). The GLR failure model for

the step failure is defined as,

fOe if tJ 0 (3.51)

1 if t >O
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The CLLR failure model for thz: ramp failure is derived similarly to the step failure

model. Equatioa (3.52) gives the definition for the GLR ramp failure model:

0 if t, < 0

nramp(ti) 0 (3.52)

(tj ý')if tj >Oj"

For both the sitep and the ramp GLR failure models, unity magnitude has been declared.

The GLR. matching filter is merely attempting to determine the type of failure, not its

magnitude.

The estimate of the failure magnitude is calculated from Equation (2.60). This

equation is rewritten below,
P= W(t,,0) (3.53)

To estimate the magnitude of the step and the ramp failures, all the information available

needs to be incorporated into this expression. Therefore using the known quantities. d,(t;),

0j, nstep(ti), and nra•p(tJ), the step and ramp magnitude estimates are defined as:

Tstpnt Ip b=S ,t ep =- S , ) (3.54)
step\4 I,

for the estimate of the step failure and:

Tramp t,, (3.55)
Vraap p k ri I7X )

for the estimate of the ramp failure. Depending upon the outcome of the modified GLR

matching filter, one of these two estimates will provide an estimate of the step or ramp

magnitude.

The GLR matching filter algorithm has now been completely defined. The following

section defines a second matching filter algorithm. In the end, the results of these two

matching filters will be analyzed to determine which provides better failure type identifi-

cation for the MNRS algorithm.
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3.4.4 The CSPR Matching Filter Models. The CSPR algorithm identifies failure

type by examining the output of the Chi-Square test. The Chi-Square test results will

display specific characteristics that can specify the failure as a step, ramp, or noise failure.

In fact, the bias detected in the Chi-Square output when a failure occurs will generally

match the shape of the failure itself. Figure 3.3 shows the effect in the Chi-Square test

that will identify the three different types of failures. While the shape of the ramp and

noise failures correspond to the exact shape of their failures, the Chi-Square test will

tend to recover from a step bias failure. Therefore the CSPR filter will expect a slightly

negative slope on a step bias failure. While a human can merely look at the output of the

St Bi" RmBias bac ia Nat

Figure 3.3 Shape Chi-Square Test as a Result of the Three Failure Types

Chi-Square test to determine the failure type, quantitative criteria need to be established

to differentiate between the types of failures. The criteria chosen are the slope and the

intercept of a first order line fit of the Chi-Square test over the period of the failure. The

slope and intercept of the line fit are distinct for the thiee types of failures. The line fit

algorithm has been adopted from MATLAB [8]. The exact points interpolated will be

those that violate the Chi-Square failure threshold. Table 3.3 explains how the slope and

intercept criteria distinguish between the three failures.

The CSPR matchintg filter assumes, like the GLR, that the failed measurement has

already been identified. The CSPR algorithm estimates the type of failure for all time

after the Chi-Square test hlas exceeded the failure threshold at time, G.. It should be
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Table 3.3 Slope an.d Intercept Values for the Three Types of Failures

r Type o Failure. Slope j Interce t]
Additive Zero or Large and
Step Bias Slightly Negative Positive
Additive. Positive Zero or

Ramp Bias Slightly Negative
Increase .n Zero Mean Zero Mean
.Meas. Noise over Time over Time

noted that the estimate of failure type will improve ovea' time as the first order line fit of

the Chi-Square output better matches the shape of the failure. The results o2 the CSPR

matching filter are compared against the GLR matching filter in Section 4.5.

3.4.5 Choosing between the NRS Filters. This section defines the exact algorithm

that will be used to select the filtec both wher, a failure has and has not occurred. The

algorithm uses the results of t.be bank of Chi-Square tests and the relative quality of the

satellite set's geometries to determine which filter is yielding accurate results. The criteria

implemented to rate satellite geometry is the Position Dilution of Precision(PDOP). First

the no failu;e selection algorithm is discussed, followed by an explanation of what happens

when a failure occurs.

For all the Chi-Squa.re tests, a threshold value has been established. As long as

all the filters are below the threshold, no failure has been declared, and the MNRS is

operating in the no failure condition. When no failure has occurred, the NRS filter 1 is

used for navigation, because the filter has the best possible combination of satellites and

transponders for navigoticn (assuming that only four satellites and five transponders can

be used at a time). Th-s navigation solution is the best, since it uses the four satellites with

the best PDOP, and the five primary transponders. Ideally it woculd be beneficiz.L to have

an eleventh filter updating with all the possible satellite and tiansponder measurements.

Theoeetically, this filter would have the best navigation correction. The eleventh filter has

not been implemented in) this work due to the computational load of simulating another

NRS filter.
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A failure is declared when the Chi-Square test for NRS filter I exceeds its threshold.

This means that the best navigation solution, filter 1, has been distorted with a failure. At

this point only one of the other filters should have a Chi-Square test that has not exceeded

its threshold. This unaffected fitter is now used to correct the INS navigation solution, The

time at which the NRS filter 1 declare,• a failure becomes the Chi-Square estimate of the

time of failure, O.. It should be noted that this estimate has varying degrees of accuracy

depending on the type of failure that has affected the system. Equation (3.56) expresses

the relationship between the actual time of failure and the Chi-Square estimated time of

f-ilure:

tfailtime = 0 chi - tdclay (3.56)

The unknown quantity, t delay, varies dramatically depending on whether the failure is a

step bias, ramp offset, or a noise increase. In fact, ;;he delay iiL detecting the ramp offset

can seriously impact the results of i.he matching filter algorithms. Chapter IV addresses

this issue of detection delay ini te IMRS algorithm. H1uweve fur the pUlupoes 'f t•hi

research, ,O is considered the best estimate of the time of failure.

Thus the estimated time of failure and thie identity of the failed measurement are

passed to the matching filter algorithms. This allows the matching filter algorithms to

identify the type of failure. Chapter IV will provide more insiglh.t into these algerithmsv

with the results of the various failure runs.

3.5 Chapter Su;,mraary

This chapter has presented the details for both the navigation filter and failure mod-

els. The basis for the measurement models has been discussed to hell, describe the intri-

ca~i•s of the NRS design. The state and dynamics model descciption,. illustrate the high

degree of nonlinearity and time-variance of the system. The reduced-order filter models

have also been presented. The methods used to induce the failures in the simulations have

been shown, alon•g with the models for the matching filters designed to detect and isolate

these failures. Leslilts and analysis of these simulations are presented iin the next chapter.
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IV. Results and Analysis

This chapter examines the results of the MNRS EDIR algorithm. First the chapter

presents flight simulation data to help define the bounds of this thesis study. Next, the

tuning of the NRS filter is analyzed with regard to filter performance in a failure-free

environment. Then the effects of different failures are shown on a single NRS filter. Finally,

the results achieved with the MN RS 0DIR algorithm are presented in full detail, including

a compariscn of matching filter algorithms.

4.1 The Sitnulelion Specifications

This section pret.ents the specifications of the simulation. The specifications are

defined as the flight profile of the aircraft, the location of the transponders, and the position

of the satellites during the simulation.

All the simulation runs in this study use a zsingle flight profile generated by PROF-

GEN. The fligh. profile has been derived from a two-hour flight of a fighter aircraft. Due to

the computational load of running a multiple model simulation, only the first 4000 seconds

of the 7200 second flight profile %re used in the simulation studies. Figure 4.1 provides

a three rhmensionai rendition of the ifight profile. The exact flight path is chown as the

n:ircraft climbs to altitude before proceeding through a high speed low altitude mishior1 .
rJhi time of failure onset is also displayed in Figure 4.1. This failure cnset time of 2000

-e:'mds is ih- same for ail failure simuon runs. Tins ifalure or.sq. tiime is arbit.radiy

chosci, at the mid-point of the flight profile.

The flight profile was chosen over a region of tho CIGTF RRS test ra):ge to allow

the tnanspoaiders to be impremon ted in the integra.ted navigation system. While the test

ra.ng has a multi,.ude of trauspondeis, the number of transponders used in this thesis has

been limitedi to six; five i.ed for the measurement updates to any cue WitS lilter. The

geographic coordinates of the six týanaponders sights are presented in Table 4.1. iiigure 4.2

shows how the 'ocatio-W of the transpondIs correspond to the aircraft's position during the

flight profile. Despite the proximity of the aircraft to the transponder rang,, transponder
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Figure 4.1 Flight Profile used for the MNRS Simulations

geometry ha~s little impact on the quality of the navigation solution. Section 4.4 discusses

which geometric considerations do impact the results of the MNRS algorithm.

Along with the transponders, the aircraft also receives measurement updates fromt

GPS satellites. Table 4.2 gives the latitude and longitude of the five satellites used in

this simulation at both the beginning and end of the simulation. Figure 4.3 shows the

relative positions of the satellites during the simulation. lai Figure 4.3, the orbit path of

#Name - La-titude]Lniue Attd
1 Tula PK, NM 33.01036' 10~6-080 20' 1322.5272f t
2 TDC, NM 32,55`58' - 106.080 50' 1241.7552f i
3 Oscara Pk, NM 33AV458' -106.22-14' 2417.5144f t
4 Salinas, NM 33.17055' -106-31044' 2695.11ff
5 Sac Peak, NM 32.47016' - 105.49o 15' 2804.81ft
6 Twin Buttes, NM 32,42'12' -106.07'38' 1365.71f t

Table 4.1 Location uf £he Transponders Transmitters in the M4NRS Simulation
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Figure 4.2 Location of the Transponder Transmitteis with Respect to the Flight Profile

[Satellite Initia1 Latiude [ Initial Longitude ] Final Latitudej Final Longitude

1 67.900 -172,210 58.630 42.300
2 34.750 -711 160 38.290 -42.780
3 -43,03° - 129.490 18.18" -122.890

t 4 78.430 -49.150 - 14.42' -56.58"

5 _ 33.820 - 15C.690  40.090 176,340

Table 4.2 Location of the GPS Satellites during the MNRS Simulation

the satellites is traced up to the final positio~i of the satellites at time T = 4000 seconds.

The dashed lines in Figure 4.3 represent the range vector at time T = 4000 seconds between

the five satellites and the aircaft. Despite the movement of the satellites, all five sateiites

are in view throughout the flight profile of the aircraft. The five satellites have been chosen

to prevent satellite switching during the simulation run-.

The purpose of this section has been to provide credibility for the simulation results.

A worthwhile computer simulation must demonstrate parallels to the real world. The

real world pz'rallels for this thesis are the real world GPS satellite positions, the RRS

,ransponder positions, and the flight profile. While the navigation information provided

to the NR.S is simulated, it is a reasonable model for real world navigation data. Th-

next section presents the filter tuning results of a single NRS filter within the simulated

enviroumenit.
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Figure 4.3 Satellites Orbit Profiles with Respect to the Flight Profile

4.2 Performance of the NRS Filter

This section documents the performance of the NRS filters in a failure free environ-

ment. T his section presents results from NRS filter i simulations. This section begins with

an overview of the changes made to the NRS filter during this thesis research. Next, cri-

tOrion is established to evaluate the accuracy of the NRS filter tuning. Once criterion has

been established, the results of the NRS filter tuning are compared with past AFIT results

and specifications provided by CICTEF. Finally, the EKE tuning process is addressed. with

an analysis of two trade-off decisions made in the tuning of the NRS filter.

The research for this thesis began in eariesI with the blending of the work done by

the Avionics lDirectoratt43] and pnist AFIT researcl[l9] into a, new NitS computer mnodel.

While this process requiredl a great deal of time and effort, only two theoretical changes

were made to the NIIS algorithma. The first chaiige is within the truth inodel of the INS.
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Previously, little information was known about the baromnetric altimeter error states. The

model originates from the Litton documentation [41. However research by the Avionics Di-

rectorate uncovered inconsistencies and problems within the Litton documentation. These

errors were corrected by the Avionics Directoratc with the help of Litton [3]. While the

corrections do not dramatically alter the results of the research, the changes do improve

the accuracy of the NRS truth modei. The second problem "incovered in the NR.S model

existed in the GPS truth model states. Past AFIT work failed to include dynamics driving

noise to the following GPS truth model error states; tropospheric delay, ionospheric delay,

and code loop range errors. This oversight allowed past NRS filters to demonstrate uni-

usually good performnance. By correcting the GPS and barometric altimeter error states,

the truth model becomes a more credible bridge between c.omputer simulation and the real

world. Without a highly accurate truth model, algorithms developed in computer simula..

tiou have little credibility in the real world. Due to the quality of support provided by the

Avionics Directorate and past AFIT research, the remaining model development problems

were easily overcome, and the NRtS tuning procnss was able to proceed cn schedule.

To ensure accurate navigation performance, twc tuning criteria are used to evaluate

the filter's state variable performance. The first criterion is the ability of the fifteen filter

state variables to track the corresponding fifteen truth state variables adequately. Opti-

mally, the Monte Carlo average of the difference between the filter and tiuth state variables

should be zero mean over the entire profile. The cecond tuning criterion is the accvracy of

the filter's standard deviation estimate. The filter-predicted zero ± the standard deviation

of each state, 0 ± a-=:, should match the Monte Carlo computed standard deviation of the

difference between filter and truth states, E.... ± a,.... Both tuning criteria can be plotted

on a single graph. Appendix C provides the mathematical description of all the variables

used in each of the filter tuning plots.

Before the jilter tuning plots are presented, a variable transformation used in this

thesis must be defined. While the first nine filter states are s&tored and propagated in a

ccmputed true reference frame, this frame of reference does not provide a great deal of

physical inight. Therefore results of the filter truning are transformed to the East-North-

Up (EN U) frame; hence, position errors are preeated in latitude, longitude, ani altitude
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error. The velocity and tilt errors are similarly documented in the East-North-Up frame.

The transformation used to present the material in the ENU frame is orthogonal and has

been documented in past AFIT research [14, 19].

20
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plot is analyzed in Figure 4.4. This figure allows the two tuning criteria to be evaluated

at the same time. Within Figure 4.4, the Monte Carlo calculated mean value of the

differenc~e between the filter and truth models longitude error is displayed by the solid line

trackii~g the x-axis. The filter's ability to track the longitude error of the truth model

is demonstrated by the zero inean nature of this trace. The second tuning criterion is

evaluated by examnining the two pair of symmetric traces in Figure 4.4. The pair of dotted

lines is the Monte Carlo calculated mean± standard deviation of the difference between

tbe filter anxd tiuth m.-odel longitude error. The dasled lines represent zero I.t the fih~er-

predicted standa•rd deviation of the orro-, Optimal fil~ter tuning would have these two pair

of lines overlappir;g over time. T[he pair of lines in Figure 4.4 are close to overlapping with

40.6



the filter-predicted standard deviation greater then the Monte Carlo calculated (i.e., the

filter is less confidence in itself than it could be). The conservative nature of this tuning

proved to be necessary to maintain good tracking of the most important navigation states,

Filter tuning plots for all the filter states are located in Appendix C.

Table 4.3 Temporal Averages of True Filter Errors (lo)

[~Filter Lati- Longi- Alti- jJEast North Up East North Azi- [
tude tude tude Vel Vel Vel Tilt Tilt muth
(ft) (ft) (ft) (fps) (fps) (fps) (arcs) (arcs) (arcs)I]

9 Desired ___ . 40.00 o.100 0.100 ..400_ a I n/a7
NRS00 17.2•2 .6 1003 .0029 10070 •.13 1 4.49 17.7

Despite the best possible filter tuning, the actual quality of the filter performance is

also limited by the size and the structure of the model itself. Therefore good filter tuning

cannot be the final criterion used to evaluate a filter. The quality of a n-avigation filter is

best described by the errors made in the estimation of position, velocity, and orientation.

Table 4.3 contains the temporal averages for these errors over the complete flight profile.

The table provides two references for comparison; the original CIGTF specifications for the

system and the results attained from a fifteen-state NRS filter implemented in past AFIT

research [19]. While the performance of the filter easily meets the CIGTF specifications, the

results are slightly degraded with respect to past AFIT research. The slight degradation in

perforn-,ancc of some states is attributed to two factors. First, the model last year did not

employ dyna__iics Oriving noise on all t.'ie GPS truth states. Second, the new NRS model

uses only fi;.,• transponder siur'- for nm-asurement updates while past AFIT research used

six. Therefore, giveni the resuitu of th,. NRS tuning process, the filter achieved is adequate

for the purposes of simulating t1- - Mý ., S FDU4R algorithm.

To understand the E;r;,,hanics ol -" ming better, background is provided on two

specific tuning decisxs. The fist tui !.<cision is the choice of tuning criterion. If

residual performance is more important ..I ate variable performance, the residuals can

be used instead of state variables to evalu . ter tuning. In this case, the filter-predicted

(zero-)mean ±signia of the residuals is co, -.,,a.ed to the actual Monte Carlo calculated
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mean:sigina of the residuals. The standards for good performance are the same as for the

state variable tuning. An example of a residual plot for NRS filter 1 is given in Figure 4.5.

This figure clearly shows that the residuals are zero-mean and appear uncorrelated over

time, yet highly conservative with regard to its estimate of residual standard deviation.

While the conservative nature of the residuals impedes FDIR, the importance of state

vaciable performance is deaemed to outweigh FDIR concerns. Degradation of the naviga-

tion quality for the sake of FDIR performance is not acceptable. Therefore, due to this

constraint, a trade-off has been made in favor of state variable estimation over residual

performance.

40 -

202

-20

-0 50 1000 1500 2000 2500 .30 3500 4000
r' ©n (sac c)

Figure 4.5 Example of Scalar Residual Tuning of the NRS Model

The second tuning decision that is addressed, regards the relative quality of tuning

between individual state variables. Quite often tuning quality on one state must be sacri-

ficed to achieve the desired performance of a more important state. Figure 4.6 shows the

two coupled GPS states in the filter, GPS user clock bias and drift. The user clock bias

shows excellent performance under both tuning criteria, while the drift appears to be tuned

far too conservatively. These two state, ýre coupled, so changes to the user GPS clock drift

also affect the user clock bias state. Attempts to improve the confidence of the drift state

seriously degraded the tracking of the user clock bias state. Since the accuracy of the user
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Figure 4.6 Relative Tuning of the GPS User Clock Bias and Drift States

clock bias state is more important, the drift state has been left with its conservative tuning.

While this tuning is acceptable for the needs of this work, had GPS drift been more crucial

to the operation of the overall system, the tuning would need to be reevaluated.

By describing a few of the tuning decisions made in this thesis, hopefully the subjec-

tive nature of filter tuning has been established. Good filter tuning can change depending

on the situation and the stipulations placed upon the designer. The NRS filter has been

tuned to attain the best estimates for position, velocity, and attitude error. If the filter is

applied to other new applications ini the future, the tuning criteria. and results should be

reconsidered. This concludes the dricursin nn filter tnning; the next section presents the

results from the MNRS FDIR simulation runs.

.4.3 Performance of the MNRS Filter

The MNRS simulation runs provide definitive results in favor of multiple model FDIR

algorithms. The presentation of the MNRS results is divided into three sections. First the

effect of the failures on a single NRS filter is shown. These results are included to motivate

the need for a recoverable failure analysis algorithm. Once the need of for the MNRS has

been established, the results from the MNRS simulation runs are presented. Finally the

impact of satellite geometry on individual NRS filters is analyzed in the last section.
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Figure 4.7 Comparison of the Effect of Satellite Failures onl the Longitude Error State

Tracking of NIL.S F~ilter 1

4, 3-l Impact of the Failures on the NJS Navigation Solution. To justify the need

for an FDIR algorithm, the effect of the failures on the NRS filter are showy.. To analyze

the effect, a single run of the filter-esti mated longitude error is compared to the failure-free

truth longitude error, When the filter is operating in a failure-free environment, thle filter

longitude error can track the truth model error, as seen in Figure 4.7.a. Each of tile three

types of failures added to the truth miodel range measurements, bias the filter model such

that it can no longer track the truth model state variables. Figures 4.7.b, 4.7.c, and 4.7.d

show that the filter solution for longitude error deviates from the truth imodel. These

plots have beeni included to mnotivate the need for a recoverable systemn. The knowledge of

the existence of a failure alone does not aid the user in his navigation. Without recovery,

Al that can be (lone is to turn off the filter corrections to the INS. Yet with thle MNRS
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recoverable filter algorithm, the INS receives accurate navigation corrections throughout

the duration of the failure.

4.3.2 JRcsults of the MVNRS FDIR Algorithm. Trhe MNR$ [DIR algorithm results

are discussed in this section, Seven failure runs are documented: six failure runs and a

baseline run for comparison. For each of these seven runs, all ten NRS filters have been

simulated running in parallel over the 4000-second flight profile. Each of thle NRS filters is

updated with identical measurement signals every two seconds over a 15-run Monte Carlo

simulation. While past AFIT research implemented only 10-run Monte Carlo analysis,

the increased computing capacity of AFIT has allowed 15-run Monte Carlo analysis to be

implemented. This increase in the number of simulation runs improves the validity of the

Monte Carlo calculated miean and standard deviation of the state variables and residuals.

The analysis of the simulations not only focuses on the effectiveness of the MNRS as an

FDIR. algorithm, but also on the different failure runs with regard to residual performance.

The majority of the MINRS results are contained in the Appendices D-J. Appen-

dices D, E, and If. contain Monte Carlo scalar residual data for each measurement update

of each NRS filter in each failure run. Appendices F, G, 1, and J contain Monte Carlo

scalar residual data for only one measurement update of each NRS filter i 2ach failure

run. The one residual plot included is for theý failed measurement. m'hc--- single residual

plots have been included to allow the reader to see the actuaA aLpact ci ti- -, failure on the

performance of the filter. Appendix K contains the Chi-Square test r- ts of each NR.S

filter in each fa~ilure run. Appendix K also includes a chart for eat1  un, displaying

which filter is actively providing the navigation correction at each poi 'it time. The raw

da-ta col-lected in this thesis has been included in these appendices, not to overwhelm the

reader, but to allow a ch~ance to evaluate the conclusions reached by thk. author, Without

access to the rmw simulation data, analysis of the analyst can be difficult.

4.3.2.1 Baseline, No Failure. To provide a cornmparison with the failure

runs, one complete MNRS run is conducted with no failures induced in the truth model.

Individual scalar residual and the Chi-Square test results are analyzed to verify the oper-

ation of the ten NRS filters and to assist in the choice of a failure detection threshold.

4-11



A 15-1 an Monte Carlo simulation demonstrates the good residual performance of all

the NRS filters. As can he seen in Appendix D, the Monte Carlo calculated scalar resid-

uals are zer,)-mean, over ti,ne. Looking specifically at NRS filter I (Figures D.1 and D.2),

the scalar residuals reflect conservative tuning with regard to measurement confidence.

This conservative tuning with regard to the residual covariance, [IIP-H' + R], removes

high frequency effects of the scalar measurement updates: both unwaitted noise and mnca-

surement information. The navigation information lost due to the conservative tuning

is partially recovered by the high sampling rate of the measuremenits. The two-second

samp!ing rate usted for all the measuiement updates is equal to or faster than any imple-

mented in past AFIT research [14, 19]. Therefore the effect of the reduced confidence in

the measurem.ult updateqi is offset by the high sampling rate.

.40
(1

M50O W0O 15W 2000 2500 3000 3500 4000
NUS Hitcr Of

Figure 4.4 Baseline Chi-Square Test Results with the Chosen Failure Threshold=15

The baseline simulation also provides the necessary data to select the threshold for

the Ch1-Square test. Threshold selection, as discussed in Section 2.3.4, is dependent on the

failure-free respouse of the residuas to normal system dynamics. The threshold must be

chosen to mnaintain a low fake alarm rate in a failure-free environment. Figure 4.8 shows

,.hz results of the Chi-Square test conducted on NRS filter 1. The threshold has been cho-

sen greater than the maximum value of the Chi-Square test. This conservative choice of

threshold eliminates the possibility of a false- alarm for the purposes of this simulation, This

simulation has been limited to the flight of one flight profile under 15 distinct represen-
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tations of dynamics and measurement truth model noise. More comprehensive simulation

testing and hardware te~sting would be subsequent steps to iterate the magnitude of thle

threshold for the Chi-Square test further.

Since no failure has been introduced to the system for this failure rtln, none of

the NRS filters violate the threshold test during the sirnulation, a~s seen in Figures .11

and K.2. Therefore, by the criteria established in Section 3.4.5, the NRS filter 1 will

continue to provide the error state corrc~tions to the INS navigation solution. Figure K.3

graphically displays which of the NRS filters provides the navigation correction to the INS

throughout the simulation. With the baseline residual performance verified and the Chii-

Square threshold established lin a failure-free simulation run, the response of the MNRS

zdgorithlm to the six failures is presented next,

4.3.2,.2 Transponder Bias Failure. The transponder step bias failure run

differs from tihe ba~seline run in thlat a base of 800ft is added to the Transponder 1 range

signal between 2000-3000 seconds in the simulation. During the simulation, the Chi-

Square test exceeds its threshold in each filter that receives the failed measurement signal.

Figures K.4 and K.5 show that only NRS filter 10 does not exceed the threshold. Therefore,

the MNR.S filter switches from NRS filter 1 to 10 for the duration of the threshold test

violation on NRS filter 1 (see Figure K.6). Appendix E cont~ains the individual scalar

residual plots for each filter for this simulation to support these results.

While the MNR.S FDIR technique adequately performs durintg the failure r'un, thle

residual response to the failures is somewhat unexpected. Past research of EKF FDI

techniques has shown that the residuals of a EKF tend to recover from a step failure over

time [2, 5]. The recovery from the failure is• caused by thle consistent nature of the step

failure. Slowly the filter will compensate for the existence of the step bias, and the residuals

will return to zero mean. W],en this occur:•, the Chi-Square test will no longer signal ar

failure, and an observer might .conclude that the bias is no longer- aiffectin~g the system,

This type of residual behavior does not allow for prolonged detection of additive constant

biases failures in the measuremenlt signals.
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FigaL.e 4.9 For NRS Filter 1, tbe Transponder 1 Measurement Residual Response to a
Transponder Step Bias=800ft

In contrast to the expected residual response to a step bias, the scalar residual of the

Transponder 1 measurement does not recover from the failure -ver time. As can be seen

in Figure 4.9, the residual bias is constant during the failure time. The lack of recovery

is caused by the modelling of the transponder error states in the NRS filter. Since bothi

transponder state variables are modelled as random biases with relatively small levels of

dynamics driving noise, the filter has no state variables that can easily absorb the failure

offsets. The magnitude of the tuning noise covariance would need to be dramatically

increased to absorb unmodelled biases. However increasirg this tuning noise wuald greatly

reduce the filter's state variable performance. Therefore it is the choice of filter model and

the relative tuning strengths that caases the filter to maintain detection over the entire

lifetime of the failure.

4.3.2.3 Transponder Ramp Failure. As with the transponder step bias, the

ramp failure of transponder signal is easily detected by the MNRS FDIR algorithm, As

seen in Figures K.7 and K.8, each filter receiving the failed measurement rapidly exceeds

the threshold of th- Chi-Square test. Figure K.9 shows the effective switching of filters for

the duration of the threshold violation. For the transponder ramp failure, tihe threshold

violation directly corresponds to the duration of the measurement failure. Tt.refore the
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MNRS FDIR algorithm both detects and recovers from the transponder ramp failures.

Appendix F contains the transponder 1 scalar residual plots for all ten NRS filters.
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Figure 4.10 The EfFect of a Transponder Ramp Failure on the Residuals of other Satellit'e
and Transpotder Measurements

One important aspect of any EKF is the state feedback into the F and H matrices of

the linearized state and measurement equations. After each measurement update, the EKF

will reevaluate the components of the F and H matrices based upon the new state estimate,

4(t+), and newly declared trajectory segments emanating from that new estimate. This

allows a failure added in one measurement to be reflected in the residuals of the other

measurements. Figure 4.10 compares the residuals of a satellite and transponder when a

second transponder signal has been failed. While the Satellite 1 measurement residual is

biased by the Transponder 1 failure, the effect on the Transponder 2 measurement residual

is more severe. Therefore, it is easier for a failed transponder measurement to affect other

transponders rather than satellites. The translation of the failure into all the residuals

increases the fidelity of the Chi-Square test and allows for consistent failure detection.

4.3.2.4 Transponder Noise Failure. Like the two other transponder fail-

ures, an increase in the transponder mea:surement noise is detected by the MNRS filter.

Figures K.10, K.11, and K.12 show how the MNRS detects the failure in nive of the ten

filters and switches to the tenth filter for navigation. The window size, N = 3, of the
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Chi-Square test keeps the Chi-Square value above the threshold despite the occasioval

low value of failed ineasurenient noise simples. Therefore, due to the size of the failure

induced and the low-pass filtering effect of the Chi-Square window size, the MNRS FDIR

algorithm recognizes and -onipensates for the noise failure ovcr tile entire period of the

failure. Appendix G contains the number 1 transponder scalar residual plots for all ten

NRS filters.
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'tgue .11 Cornparisoit of Step, Ramp, and Noise Transponder Bia-ses on the Scalar
Residual of "iransponder Measurement 1 of NRS filter 1

As with the previous two transponder measurement failures, the transponder noise

failure generates a unique response in -%he scala.- reidual measurements. The failure type

can be visually identified in the scalar residual of the failed measurement. Figure 4.11
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compares the resid uHts of the Transponder 1 measurement for the tratisponder step, ramp,

and noise failures. As can be seen, each of the failures causes a unique reaction in the

scalar measurement residual. Dulring the step bias, the Monte Carlo mean of the residual

rises to a peak and then maintains a constant value through the failure period. During the

ramip offset, the residual mean slowly slopes away froir -ero mean. Finally, the increase in

the measurement noise increases the standard deviation of the residual without changing

its mean value. The two matching filter techniques described in Sections 2.3.2 and 2.3.3

will attempt to exploit this behavior in the residuals to identify the type of failure affecting

the system.

4.3,2.5 Satellite Bias Failure. Whi~e the MNRS FD!R. algorithm correctly

identifies and recovers from a satellite step bias failure, thc residual results differ in sign if-

leant ways from the transponder step bias results of Section 4-3.2.2. Before the differences

are discussed, the Chi-Square test results for the satellite step bias failure run are presented.

Fip,ures K.13 and K.14 bluw bte reuliub for the individual Chi-Square tests condicted on

each filter. As can be seen in the Chi-Square plots, NRS filter 3 is the only filter not

receiving the failed measurement signal. Therefore, as seen in Figure K.15, the navigation

correction switches to NRS filter 3 for the duration of the Chi-Square threshold violation.

Therefore the MNRS FDIR algorithm does isolate, detect, and recover from a satellite step

bias failure. Appendix H contains all transponder and satellite scalar residual plots for the

ten NRS filters.

Despite the fact that the MNRS filter detects and recovers from both satellite and

transponder step bias failures, the effect of the two failures on the scalar residuals differs

drastically. As previously discussed in Section 4.3.2.3, the transponder step bias causes a

continuous bias in the residual of the measurement residuals. This constant bias allows the

Chi-Square test to detect the failure accurately over the entire failure lifetime. While this is

true for a transponder failure, it is not true for a satellite failure. During the satellite step

bias simulation, the magnitude of the Chi-Square test initially spikes when the failure first

occurs. After the initial spike, the magnitude of the Chi-Square variable decreases back

down to a failure-free level. Figure 4.12 shows how the filter actually "learns" the failure

4-17



and incorporates the erroneous data until it is impossible to distinguish that the failure

is still occurring. This result is expected, since the GPS filter model contains error states

that absorb the effect of the failure. The EKF interprets the satellite step bias failure as

a change in the GPS user clock drift and bias error states. The filter uses these states to

account for the failure effect, thereby removing the bias from the measurement residuals.
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Figure 4.12 Effect of a Satellite Bias as Compared to a Transponder Bias on the Chi-
Square Test of NRS Filter 1

While this effect is expected, it is not desirable. Had the failure duration been

extended to 2000 seconds, the Chi-Square test would no longer have been a valid decision-

maker between the different NRS filters. One by one each Chi-Square test would fall below

threshold, despite the fact that the failure still existed. While this effect impairs the per-

formnnce of the MNRS algorithm, a proposal is considered in Section 4.5 to use the results

of a matching filter to compensate for the step bias failure. Given the implementation

NRS filters used in this thesis, the MNRS algorithm cannot counteract the learning of the

satellite step bias failure.

4.3.2.6 Satellite Ramp Failure. The results from the satellite ramp bias

failure run are similar to the step offset results. While the MNRS FDIR algorithm is able

to identify and recovec from the failure correctly, the filter itself impedes the performance

of the algorithm, compared to the i'ransponder ramp bias results. The results achieved
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Figure 4.13 Comparison of Satellite and Transponder Residuals, Each Affected with a
Additive Ramp Bias

by simulatin~g the ten filters running in parallel can be seen in the Chi-Square plots in

Figures K.16 and K.17. In these figures, each individual Chi-Square test experiences

signiflcant delay in detecting the failure. i'igiire 4.1i3 compares t~he scalar residuals of

a satellite and transponder measurement, each biased with a ramp failure. While the

transponder residual immediately slopes away from zero mean at a high rate, the satellite

residual barely exceeds the filter-predicted standard deviation. Although the reader might

suspect that this effect is caused by the relative precision of the two types of measurement

updates, the relatively equal weighting of the tuning gains for satellite and transponder

measurements does not support such a conclusion (see Table B.9). This subdued failure

effect is directly related to the GPS user clock drift and bias states and their tendency to

compensate for satellite failures. Despite the reduced response due to state compensation

to failures, the MNRS can still detect and compensate for failures, thereby maintaining

robust navigation (see Figure K.18). Appendix I contains satellite 3 scalar residual plots

for the ten NRS filters,

4.3.2.7 Satellite Noise Failure. The final failure runl in the thesis simulates

an increase in measurement noise on a satellite measurement. While each of the NRS

filters is able to maintain residual stability (zero mean), the increase in the variance of the

measurement residuals is detected by the MNRS algorithm. As can be sceen in Appendix 3,
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the Monte Carlo calculated variance of thie residuals increases during the time of the failure.

This increase in the variance of the residuals translates, into large spikes in the output of the

Chi-Square tests on each of the filters that receives the failed nieasuremcent. Figures K.19

and K.20 display the Chi-Square threshold tests for all ten filters. Figure K.21 shows the

navigation switches to NRS filter 3 for the duration of the increase in measurement noise.

Each of the failure ruts, the three transpoider and three satellite runs demonstrate

the effectiveness of the MNRS algorithm. By lim-iting the distribution of measurements to

identical filters, failures are (:asdly detected and recovered. There is no need for feedback

since one of the NRS filters never updates" with the failed mneasurdmeat. Therefore the

MNRS algoritlun is successful in accomplishing failure detection, isolation, and recovery

within the scope of the failure environment imposed in this research. This concludes the

analysis of the MNLIS FI)IR algorithm.

4.4 Analysis of Measurement Geometry

This section analyzes the effects of oatellite constellation "geometry on the perfor-

tuance of individual NRS filters. Measuremen? geometry is defti ,'d as the positioning of

the ra.nge measurement sources relative to the aircraft. Measurement geometry quite often

dictates the quality of the navigation solution of an integrated navigation system. D)ue to

the multiple model structure of the MNRS algorithm, the &at. collected in this thesis can

also be used to analyze sate!lite geometry. This is possible .-.ince each filter in the MNRS

model is ,pndated with a unique set of measurements T(see Table 1 1) In thiS anaysis', the

longitude errol oG an NRS filter is used to study the effect of satellite geometry on the

performance of the state variables. Next the effect of satellite geometry on the residuals

is also examined. This section demonstrates that satellite geometry impacts both state

variable tracking and the FDIR performance of the NRS filter.

Of the two types of range measurements, GPS and RRS, GPS satellite geometry

has a distinctly larger effect on the state variable tracking of the NRS model. To explore

the impact of satellite geometry, the baseline simulation runs of NR.S filters 1 and 4 are

compared. Ta-ble 1.1 shows how these two filters differ by only one satellite measuremnent.

The two filters are otherwise identical in all regards in this simulation study. Figure 4.14
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shows the inipact of the difl'erenL satellite geometries on the longitude err-or cf the Iwo

filters. 'Tlle two plots in the figure display thee difference, between the Monte Carlo calculated

inean ± I itaiindard deviation of the difference between the filter longitude error-state

and the truth model longitude error in a fzilure-free environment. The figure shows that
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Figure 4.14 Comparison of Longitude Error States of NRS Filters with Different Satellite
Geometry

NRS filtei 4 doc.s not maintain zero mean tracking of the truth model longitude error.

Tho inability (, 'a.,,ck the error is caused by the relatively poor PDOP of NRS filter 'I

compared to filter 1. l-ie initial PDOP values for each of the two satellite measurement

sets are recorded belo;'"w te two plots in Figure 4.14. Since the direct relationship between

PDOP and ,tate estimation ihas been anticipated, the satellite measurement set with the

best geometry is chosen to update the filter in the failure-free environment.

While poor satellite geometr"' has a negative effect on filter navigation, poor geometry

actually makes failure detection easier. When a filter is affected with an unmodelled failure

bias, filters with poor geometry reflect this failure more clearly in the residuals. On the

other hand, when the geometry is good, the unmodelled failure bias is partially absorbed

into the filter state estimates. Figure 4.15 compares a scalar residual of NRS filters 1 and

4, each affected with a satellite step failure. The filter with the poor geometry, filter 4,

shows a larger faimure bias in the scalar residual than filter 1. Therefore, when a ., hi-Square
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Figure 4.15 Comparison of Transponder 1 Scalar Measurement Residuals for NRS Fil-
ters 1 and 4 during a Step Bias Simulation Run

test is conducted on the two filters, the magnitude of the test will be greater in the filter

with poor geometry. Figure 4.16 compares the two Chi-Square tests for filters I and 4 for

the stel'ite step bias simulation. As can be seen in the figure, the Chi-Square test has an

eacier time detect~ng the failure in the filter with poor geometry. Therefore it is concluded

that good measurement geometry hinders the ability of an FDIR algorithm to detect a

failure.

l!4M

Figure 4.16 Comparison of Chi-Square Results for NRS Filters 1 and 4 during a Step

Bias Simulation Run
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The two conclusions about geometry reinforce preconceived notiors about the NRS

model. First, good geometry does improve the quality of state estimation. Since inore

accurate state performance is desirable, good goometry is also desirable. To go along with

the improved state estimation, good geometry also helps hle filter to track unmodelled

failure biases. This tracking makes failure detectiou imore difficult. While this section has

addressed sonie of the issues involving nmeasuiement geonmntry considerations, the analysis

is far from complete. Possibilities for future research endeavors will be discussed ini Chapter

V.

4.5 tPerfortmnarcc of the Matching Filter Algorithms.

The last, research undertaken has been the work to develop an accurate matching

filter algorithm to add to the MNIRS FDIR algorithm. The purpose of the matching filter

is to identify the type of ineasuremuent error on a known failed measuremeat. Within the

scope of this thesis, it. is desirable to identify between the three types of failures induced on

the satellite and transponder range measurement signals: an additive step bias, an additive

ramp offset, and an increase in measurement noise. Two matching filter algorithms are

presented as methods for identifying the failure type: the generalized likelihood ratio (GLR.)

and the Chi-Square Pattern Recognition (CSPR) matching filters. The GLR technique

implements a ratio of hypothesis probability densities to identify failures, while the CSPR

attempts to match the shape of a failure offset to pre-determined failure model. Both these

algorithms use the results of NRS filter 1 to attempt to identify the failure. The results of

the GLR and then the CSPR inatching filters are presented, followed by a comparison of

the relative qiality of the two algorithms. The goal of this analysis is to suggest the best

direction for future FDIR work to pursue.

4.5.1 GLR Matching Filter Results. Overall, the results for the GLR algorithm

have fallen short of expectations. While previous AFIT research has had limited success

using the algorithm as a method to identify which measurement fails [19], the fidelity of the

algorithm is not sufficient to identify the ex•act failure type. As stated in Section 2.3.2.2,

the GLR matching filter relies on the magnitude of the T(ti) functiou to determine the type
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of failure. As explained in Equation (2.68), if the. magnitude of T(ti) is nmuch greater than

1, the failure is a ramip offset. Similarly if the magnitude is mnuch less than 1, the failure is

identified as a step bias. If the magnitude remains iii close vicinity of 1, neither step nor

the ramip GLR failure model can identify the failure; therefore the algorithm assunies the

failure is an. increase in tile measurement noise.

Despite the efforts to fine tune the algorithm, the GLR matching filter is unable to

distinguish between differet~t failure types. Figure 4,17 shows tthe response of tL~e "T(ti)

function for the three different transponder failures. While the algorithm seems to idenitit3v

tile ramip failure correctly, tile step bias cannot be distinguished from aa iilcr-,ase, in mea-

suremneut noise. In fact the GLR seemis to believe both biases are increases in mneasurement

noise. For the satellite mecasuremlent failures, all three failure types are identified as ranip
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failures. As can be seen in Figure 4.18, the GLR is more confident ini the step bias being

a ramp failure than the actual ramp bias.
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30

IIO[ 1~~~50 ______

2s2 2100 2200 2302 2400 Z500 2600 2100 2M5 10 22 30 225D 2 530D23 2400 2450 2500 2550 MW0
Dur~utod f o, FPuIIrq Pur*4Ms c t0 Fjur.

Step Ramp

2000 210D =W • 200 25MJ 2100r-,_i f " d•Fan'ro

Noise

Figure 4.1.8 Comparison of GLR Matching Filter Results, T(ti), for a Satellite Step,
Ramp, and Noise Failure

While the results from the GLR simulation appear to be rz dom, there is a com-

mon fault in the system that produces these results. The problem lies in a fundamental

assumption, made in the derivation of the GLR equations. The GLR equations in Chap-

ter II are derived for a discrete-time system model. Yet the model equations for the

NRS filter are continuous-time state equations. This research assumes that the F ma-

trix in the system dynamics equation can be discretized using a discretization algorithm

described in Section 2.2.2. Unfortunately, this discretization process does not retain essen-

tial dynamics information necessary to match g(tj,O,) to the residuals in Equation (2.58).

This discretization is hampered both by the coarse sampling time, 2 seconds, and the

assumed first-order approximation (Section 2.2.2). This theoretical breakdown prevents
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T(ti) in Equatiou. (2.67) from dist aguishing between the iamp and step failures. Chapter

V discusses possible solutions to this dilemma. Results for the GLK estimates of the fail-

ure magnitudes have not been included since the GLR matching filters cannot accurately

specify failure type.

4.5.2 CSPR Matching Filter Results. While the resuits for the GLR algorithm are

less than heartening, the CSPR matching filter provides hope for the future of failure type

identification. While the GLR algorithm attempts to use information from the residuals,

tle F matrix, and H matrix to determine the failure type, the CSPR concentrates solely

on the residual information to identify the failure. Therefore the CSPR algorithm is not

limited by the validity of the discretization of the state dynamics matrix.

As explained in Section 3.4.4, the CSPR uses the Chi-Square output to determine

the type of failure. The failure type is established by matching the shape of the failure

portion of the Chi-Square output to the actual shape of the failure. Two criteria are used

to evaluate the shape of the Chi- 0 quare output. These criteria are the slope a-R Uhe

intercept of a first-order line fit of the Chi-Square output over the duration of the failure.

To implement this criteria in real time, a new line fit is taken every time another Chi-

Square output is above the failure threshold. Over time, the line fit will more accurately

match the shape of the failure. By analyzing the slope and intercept of the line fits over

time, the type of failure is determined.

-0.15
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Figure 4.19 NRS Filter 1 Chi-Square Line Fit Data for a Satellite Step Bias
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Table 4.4 Final Slope and Intercept Values for the Six Failure Runs

FType of Failure ] Desired Slpe F Inal Slope Desired Intercept Final Intercept

Transponder Zero or j Large and
Step Bias Negative 0.397 Positive 1.38 X 10:i

Transponder Zero or
Ramp Bias Positive 1.97 Negative -- 4.22 x 103

Transponder Zero Mean Zero Mean
Noise Increase over Time 0.257 x 10-2 over Time ..68 x 102

Satollite Zero or Large and
Step Bias Negative -0.969 Positive 2.76 x 1i0

Satellite " Zero orRamp Bias Positive 1_22 Negative -2.99 x 103
Satellite Zero Mean Zero Mean

Noise Increase over Time 0.380 over Time 5.49 x 102

To explain this somewhat confusing criterion, a satellite step bias simulation is exam-

ihed. Figure 4.19 plots the slope and the intercept of the iine fit to the Chi-Square output.

During the early portion of the failure, the line fit has not established sufficient points

of data, so the slope and intercept of the line fit deviate from expectations. However, as

the failure continues, the slope and the intercept correspond to expectations described in

Tab'½ 4.4. The intercept of the line fit is a large positive value and the slope of the line be-

comýc .-'ightly negative. This identifies the failure as a step bias on satellite measurement

As explained earlier, the more data points available, the better the line fit matches

the established criteria. Therefore, Table 4.4 documents the final slope and intercept values

of the line fit for all the failure runs. The final slope and intercept are determined from

the line fit incorporating all the Chi-Square outputs that are above the failure threshold.

Therefore, there does exist significant delay in identification of failure type using this

method. Appendix L contains the full slope and intercept plots for all the failure runs over

the complete failure window.

While the CSPR can identify most failures, the algorithm is limited by its own

definition. The CSPR will only correctly match the failure and the failure type when the

Chi-Square output resembles the failure itself. While this is usually the care, there are

exceptions, as can be seen in the Chi-Square output of NRS filter 1 during a satellite ramp
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Figure 4.20 NR.S Filter 1 Chi-Square Results for a Satellite Ramp Failare

failure. This Chi-Square output, Figure 4.20, does not resemble a slope over the time of

failure. While 'the failure can be detected with the Chi-Square test, the CSPR matching

algorithm will misinterpret the line fit, yielding an erroneous answer. Further study into

the residtial response to failures is necessary before a matching filter like the CSPR can

accurately identify all failures.

While both the CSPR. clearly outperforms the GLR matching filter, there are reasons

to pursue both algorithms in future research. While tbh GLR requires a fundamental

change in definition to be reapplied to the NRS filter model, pursuit of the algorithm

does have a l ng-term payoff. Since the GLR equations are derived from the EKF model

equations, the GLR has the potential to be applied to other models besides the NRS. On

the other hand, the CSPR has provided reasonably successful identification using very little

computationil load and readily available inputs. However the CSPR algorithm has been

developed from post-process analysis of one model affected with finite number of failure

situations, If the scope of the research is broadened, there is no assurance that the CSPR

matching filter will be able to perform consistently.
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4.6 Chapter Summary

This ends the analysis of the data collected in the development of the MNRS FDIR

algorithm. The following chapter summarizes the results of this thesis and presents rec-

ommendations for future research.
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V. Conclusions and Recommendations

This chapter presents the conclusions reached in the research and development of

the MNRS FDIR algorithm. The remarks will focus on the performance of the NRS

single filter, MNRS FDIR algorithm, and matching filters. The chapter concludes with

recommendations for future research endeavors.

5.1 NRS Filter Performance

The 15-State NRS filter has once agai)nL demonstrated accurate navigation corrections

in the simulated environment. This NRS filter matches the performance of past filters,

despite the reduction in the number transponder measurements from six to five and the

correction of various errors in the NRS truth model. By keeping only the essential states

with increased tuning gains, the filter can track the truth model with acceptable accuracy.

An examination of the model has shown that the GPS filter state variables are the

key to this reduction in states. The coupling of the GPS drift and clock bias states

with increased tuning gain will quickly compensate for unmodelled range biases. This is

a highly beneficial quality when many of the truth model range biases are unmodelled

in the filter. Yet this characteristic does hamper failure identification by tracking the

occurrence of failures like any other unmodelled range bias. This is a trade-off consideration

in developing the model. If the sensitivity of the GPS error states is reduced, the filter will

not compensate for unmodelied range biases such as ionospheric and tropospheric delay.

Since the choice in this thesis has always been to maintain the best possible performance

in the failure-free environment, the FD1R technique must function in a less than optimal

environment. This decision will be addressed again in Section 5.3.

The sensitivity of the model to changes in satellite geometry has also been investi-

gated. The filter has shown that the PDOP of the satellites will affect the accuracy of the

state estimation in the NR.S implementation. Also, the negative effect of good PDOP has

beer demonstrated on the FDIR algorithm. The investigation of measurement geometry

has been documented to encourage future research into this area.
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5.2 MNRt•S FDIR Performance

The IMNRS has shown that a simplified implementation of EDIR concepts can solve

the problem of robust navigation in a failure environment. Researchers have a tendency

to attempt to produce one solution for all problems (i.e. failure detection, isolation, and

recovery). Both MMAE and the GLR algorithms have been proposed as cure-alls for

the ailments of EDIR. Yet the MNRS algorithm exploits the positive qualities of several

theories rather than just one, to attain robust navigation.

Throughout various research endeavors at AFIT, the Chi-Square test has shown an

ability to detect the presence of a failure rapidly [2, 5]. Usirng residual information from

"all the measurements, the Chi-Square test detects failures as soon as the residuals deviate

from their failure-free zero-mean behavior. The MNRS uses the Chi-Square variable only

for its best quality, rapid and accurate detection of failures. The MNRS does not ask the

Chi-Square test to isolate the failure or estimate the failure magnitude. This would be

counterproductive, since the Chi-Square test does not perform these tasks well. Instead

the MNRS uses other techniques better suited to isolation and recovery of the failure.

Failure isolation and recovery are accomplished with the use of multiple models.

Assuming only single failures, the multiple models of the MNRS isolate the failed signal

at the rate of Chi-Square detection. Rather than waiting for a more time-consuming and

less reliable isolation algorithm, the MNRS has intermeshed the benefits of the Chi-Square

test and multiple modelling to identify the failed measurement signal. Since the MNRS

contains a model that does not receive updates from the failed measurement, recovery is

as simple as switching the filter used to correct the INS solution.

The real limitations for the MNRS lie in the assumptions made in its development.

The MNRS assumes that navigation with four satellites and five transponders is desirable.

If more satellites and more transponders are used to update the filter, more filters are

needed to maintain the FDIR capabilities of the algorithm. Also, reconfigurability must

be considered after a failure has occurred. Once a measurement has failed, the entire

MNItS should reset to be ready for another failure in the measurement signals. While these

problems have reasonable solutions, to simulate the more realistic system is beyond the
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scope this thesis. Nonetheless the performance of the MNRS demonstrates that exploiting

the benefits of multiple FDIR techniques in one algorithm, can solve the problem of robust

navigation in a single-failure environment.

5.3 Matching Filter Performance

The comparison of matching filter techniques has not yielded a clear favorite for fu-

ture research. Neither algorithm demonstrates a ciear superiority in performance. While

the discrete-time GLR matching filter is able to detect failures, the continuous-to-discrete

transformation of the F dynamics matrix does not retain sufficient information to distin-

guish between failure types. Either the definitions of the f-&lure medels need to be altered

or the GLR algorithm needs to be rederived using a continuous-time form of staie equation.

On the other hand, the CSPR matching filter does isolate failures accurately as long as the

residuals retain the shape of the failure. For the transponder failures, the CSPR filter has

absolutely no problems, because the Chi-Square output exactly matches the shape of the

failure. This does not hold for the satellite failures. Due to the GPS filter state's tendency

to absorb the bias induced in the failure and the ability of satellite geometry to affect the

residual failure response, the Chi-Square test for satellite failures does not always match

the shape of the failure itself. When Chi-Square output of a failure varies greatly from

the expected shape of the failure, the CSPR will misinterpret the type of failure. This is

a fundamental limitation of the CSPR matching filter.

Therefore the GLR still must be considered the more viable candidate for future

failure type identification research. Algorithms like the CSPI. are limited by the assump-

tions made in there implementation (i.e. the shape of the failure is independent of system

dynamics). The GLR matching filter has the theoretical support to encourage future re-

searchers to decipher the different problems encountered in this research. Overall failure

type identification is still an extremely open ended area of research that needs further

investigation.
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5.4 RJcoiincndations

To conclude this thesis, recommendations are made for future AFIT research. These

ideas concentrate on improving the accuracy of the NRS modei and furthering the devel-

opment of failure type identification techniques.

* Verify the NRS filter in a new simulation environment. All past research on the

NRS model has used consecutive generations of the same MSOFF Kalman filtering

computer code. There is a definite need. to transfer the code to a more interactive

and modern programming environment. This process will allow reverification of past

work and a more comprehensible base for future work.

* Analyze the impact of high dynamic profiles on the NRS model. (C'IGTF is interested

i n modelling the effects of GPS signal loss due to high dynamics maneuvers. By

developing new models, the impact of high dynamics on the NRS model can be

addressed.

a Continue the analysis of filter sensitivity to measurement geometry. This thesis only

pursued this topic as an aside; measurement geometry is an impoitant and unexplored

area of research at AFIT.

a Implement a real-world NRS filter at AFIT. AFIT currently has the facilities and

equipment to put together and test a hardware version of the NRS filter. Produc-

tion of a real system would open a myriad of future research avenues for the NR.S

algorithm.

* Reverify the accuracy of the truth model for the NRS filter. The AFIT NRS truth

model has remained unchanged for numerous years. The relative accuracy of the

transponder measurements and the GPS measurements is of specific importance to

filter performance.

* Research and develop a real velocity-aiding model for the NRS. Every generation of

NRS research has shown that the filter goes unstable without velocity aiding. Yet an

accurate velocity model has never been explored by AFIT. Therefore an imaginary

model is still in place to maintain stability of the filter. The development of a

velocity-aiding model will improve the validity of the NRS simulation results.
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o Explore alternative failure identification algorithms. While the MNRS does provide

nearly perfect FDIR performance, the multiple model structure carries a signifi-

cant computational cost. Future research should explore the use of individual scalar

residuals of a single filter to detect and isolate failures in place of a multiple model

structure. Th, actual tuning of the single filter should be adjusted to enhance filter

residual performance. By improving the performance of tie residuals at the expense

of the state variables, the filter now has the single purpose of FDI. This FDI filter can

be run in parallel with a second EKF tuned for the most accurate state estimation.

By feeding failure data from the FDI filter to the state estimation filter, a two-filter

FDIR technique can be developed.

e Derive and implenment a continuous-time GLR matching filter. A real problem in

assessing the problems with the GLR matching filter is the discretization of the F

matrix inherent in the algorithm. This discretization may be causing the problems

experienced with failure type identification. Therefore to implement the GLR equa-

tions properly, a continuous-time GLR matching filter is essential, rather than con-

tinuing to try to force feed a discrete time GLR matching filter into a sampled-data

NRS EKF model.

* Pursue a new CSPR based algorithm to recognize patterns in the output of the EKF.

Perhaps explore the possibilities of implementing a neural net to identify failure types.

5-5



App(ndix A. 4. rror Slate Dcjini/ions for thc Truth and Filter Modl"

Tabular listings of the truth and filter models are presented. Tables A. 1 and A.2 show

the 39 INS states for the truth model, with the LN-93 state numbers given for reference to

the Litton technical report on the INS [4). Tables A.3 and A.4 list the RRIS and GPS states

respectively, and Table A.5 lists the states in the reduced-ordered NRS filter models.
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Table A,1 39-State INS System Model: First 24 States

State State Definition 7LN-93
Number Symbol .... __ State

I (9r X-component of vector angle from true to computer frame 1
2 60, Y-componernt of vector angle from true to computer frame 2

3 M,. Z-component of vector angle from true to computer frame 3
4 0, X-component of vector angle from true to platform frame 4
5 09 Y-component of vector angle from true to platform frame 5

6 (PI Z-cornponent of vector angle from true to platform frame 6
7 7V. X-component of error in computed velocity 7
8 ( V,• Y-component of errol in computed velocity S
9 V', Z-component of error in computed velocity 9

10 6h Error in vehicle altitude above reference ellipsoid 10
11 )hI Total baro-altimeter correlated error 23
16 4hL Error in lagged inertial altitude 11
17 6aS 3  Error in vertical channel aiding state 12
18 (S 4  Error in vertical channel aiding state 13
19 Vo X-component of accelerometer and 17

velocity quantizer correlated noise

20 V. Y-component of accelerometer and 18
velocity quantizer correlated noise

21 V,, Z-component of accelerometer and 19
velocity quantizer correlated noise _

22 pg.' X-component of gravity vectof errors 20
23 ,gy Y-component of gravity vector errors 21
24 bg- Z-component of gravity vector errors 22
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Table A.2 39-State INS System Model: Second 19 States

Sta.te State Definition l LN-93
Number Symbol _ State

25 b, X-component of gyro drift rate repeatability 30
26 by Y-component of gyro drift rate repeatability 31
27 ). Z-component of gyro drift rate repeatability 32
28 Sq X-component of gyro scale factor error 33
29 S9V Y-component of gyro scale factor error 34
30 ¢. Z-coinponent of gyro scale factor error 35
31 Vb, X-component of accelerometer bias repeatability 48
32 - L Y-component of accelerometer bias repeatability 49
33 %N, Z-component of accelerometer bias repeatability 50
34 SA4  X-component of accelerometer and velocity 51

quantizer scale factor error

35 SAIF Y-component of accelerometer and velocity 52
quantizer scale factor error

36 SA. Z-coinponent of accelerometer and velocity 53
quantizer scale factor error

37 SQA, X-compenent of accelerometer and velocity 54
quantizer scale factor asymmetry

38 SQA1 Y-component of accelerometer and velocity 55
quantizer scale factor asymmetry

39 SQA. Z-component of accelerometer and velocity 56
quantizer scale factor asymmetry

40 bLt X accelerometer misalignment about Z-axis 66

4 12 Y accelerometer misalignment about Z-axis 67
42 113 Z accelerometer misalignment about Y-axis 68
43 c(7 X-acceleroineter misalignment about Y-axis 69
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Table A.3 26-State RRS System Model

State State Definition

Number Symbol

12 R 6?6 Range error due to equipment bias
13 6 vb Velocity error due to equipment bias

4.1 'PT 1 Transponder 1 x-component of position error
-15 6PTIý Transponder 1 y-component of position error
46 6PT1, Transponder I z-component of position error

-17 6RTI. Transponder 1 range error due to atm propagation
48 6 PT2j Transponder 2 x-component of position error
• 19 bPT'j Transpoider 2 y-component of position error
50 6PT2. Transponder 2 z-component of position error
51 6RT2. Transponder 2 range error due to atm propagation
52 6PT3 Transponder 3 x-component of position error
53. _P__ 3 Transponder 3 y-component of position__ error
54 6 P, 3. Transponder 3 z-component of position error
55 6RT3, Transponder 3 range error due to a tm picpagation
56 6PT4, Transponder 4 x-component of position error
57 -PT4, Transponder 4 y-component of position error

58 PT4. Transponder 4 z-comporient of position error
59 6 RT4. Transponder 4 range error due to atm propagation
60 P- IT•• Pra.ponder 5 x-component of position error
61 6 PT,, Transponder 5 y-component of position error
62 6PT5. Transponder r5 z-component of position error
63 6 RT5, Transponder 5 range error due to atm propagation
64 6•PT5 Transponder 6 x-component of position error
65 6PT5% Transponder 6 y-component of position error
66 6PT5. Transponder 6 z-component of position error
67 6RT5[ Transponder 6 range error due to atm propagation
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Table A.4 30-State GPS System Model

State State Definition
Number ; Symbol

1t •R Ik User clock bias

15 6DMik. User clock drift.

68 "Rc.1 o0 , SV 1 code loop error
69 6 Rtop SV 1 tropospheric error
70 - R,,,,, SV 1 ionospheric error
71 6 Rak.., SV 1 clock error
72 bxsvl SV 1 x-component of positien error
73 by,, SV 1 y-component of position error

74 bzsv1  SV 1 zycomponent of position error
75 6R~,00 p, SV 2 code loop error

6 6R,op SV 2 tropospheric error
77 bRio5• SV 2 ionospheric error
78 6Rjk., SV 2 clock error
79 6xV2, SV 2 x-component of position error

80 by,, SV 2 y-component of position error
81 6Z', V, SV 2 z-component of position error
82 +Rc1 oV SV 3 code loop error
83 6Rt,.op SV 3 tropospheric error

8,1 bRio,, SV 3 ionospheric error
85 6RIk,, SV 3 clock error

86 8 x, SV 3 x-component of position error
87 6y,,, SV 3 y-component of position error
88 yz, SV 3 z-component of position error
89 6R,,,,,, SV 4 code loop error

90 bRtroP4  SV 4 tropospheric error
91 bRi-, SV 4 ionospheric error

92 bRak,.. SV 4 clock error
93 6x,, SV 4 x-componenrt of position error
94 by,, SV 4 y-component of position error

95 tz,,, S V 4 z-component of position error
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Table A.5 15-State Reduced-Order Filter Model

State State Definition
Number Symbol ,

1 60_, X-component of vector angle from true to computer frame
2 boy Y-component of vector angle from true to computer frame
3 60, Z-component of vector angle from true to computer frame
4 0. X-component of vector angle from true to platform frame
5 OY Y-component of vector angle from true to platform frame
6 0z Z-component of vector angle from true to platform frame
7 6 V, X-component of error in computed velocity
8 6VY Y-component of error in computed velocity
9 6V, Z-component of error in computed velocity
10 - ih Error in vehicle altitude above reference ellipsoid
11 bhB Total baro-altimeter correlated error

12 6R,5 Range error due to equipment bias
13 bvb Velocity error due to equipment bias

15 6_X__c__ User clock drift.
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Appendix B. Dynamics Matrices and Noise Values

B.1 Definition of Dynamics Matrices

In Chapter 3, the truth and filter model dynamics mirtrices are defined by tiLe subma-

-drices, FrtiterF, FINSti .INSc,, FRRS,, and F0 ps, of Equation (3.3). The Fritte represents

the filter dynamics matrix, which is also a submatrix in the larger truth model dynamics

matrix. The other three matrices represent the additional truth model non-zero portions of

the F matrix that simulate the real world. Tables B.1, B.2, B.3, 8.4, and B.5 contain the

non-zero elements of the dynamics submatrices FFilt,, FINS,•, FINS,12 , FRRS,, and F!Ps,

respectively. All the undeclared variables shown in the following tables are defined in the

LN-93 technical report, along with their units [4]. The structure of the dynamics matrices

below correspond to the truth model state definitions in Appendix A.
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Table B.I Elements of the Dynamics Submatrix FFiltr=

[Element Term Element Term

(1,3) -pY (1,8) -CRY

(2,3) pZ (2,7) CRx

(3,1) py (3,2) -PC
(4,2) -9. (4,3) __

(4,5) i_ ,,. (4,6) --__ __

(4,8) -CRY (5,1) S2,
(5,3) -fT (5,4) -Wit,,,
(5,6) wi_._ (5,7) CRX

(6,1) -Qv (6,2) Q._
(6,4) Wit (6,5) -Wit_
(7,1) -2Vy - 2V.Q, (7,2) 2Vs
(7,3) 2VJ 0, (7,5) -Az
(7,6) AY (7,7) -VCRX
(7,8) 2S2 (7,9) -. pL - 2f)y

(8,1) , 2 vY (8,2) -2VS, - 2Vý,
(8,3) 2vJ._y (8,4) A,
(8,6) -AT (8,7) -2S
(8,8) -V•CY (8,9) pT + 2Qx
(9,__) 2V•, (9,2) 27VYI'
(9,3) "2VyQ• - 2V,%• (9.4) -A_
(9,5) AT (9,7) p+ 2U, + VvCRX

(9,8) -p. - 2% + VgCRy (9,10) 2go/a

(11,11) -___ __ (14,15) 1 ft 2/sec

B.-2



Table B.2 Elements of the Dynamics Submatrix FINS,,

Element ITerm Element Term Element Term

(9,16) -k 2  (9,17) -1 (9,18) k2
(10,9) 1 (10,16) -k 1  (10,18) ki - 1

(16,10) 1 (16,16) -1 (17,16) k.3
(17,18) -k 3  (18,10) k4  (18,16) -k4
(7,19) Cl1  (7,20) C1 2  (7,21) C 1.3

(7,22) 1 (8,19) C21  (8,20) C2 2

(8,21) C 2 3  (8,23) 1 (9,19) C3 1

(9,20) CG2  (9,21)1 C3 3  (9,24) 1
(9,11) k2 (10,11) kl (17,11) -k3

(18,11) k4/600 (18,18) k4 - 1 (9,43) C3 3A"A

(4,25) C 11  (4,26) C12  (4727) 3"
(4,28) CLVwbO (4,29) C12Wib, (4,30) ClWLib,

(5,25) C2 1  (5,26) C2 2  (5,27) C 23

(5,28) C21wjib (5,29) C 22 wb (5,30) C2awOb,

(6,25) C3 1  (6,26) C32  (6,27) 3

(6,28) G31Oib, (6,29) Ca2wibý (6,30) C 3 3Wib.

(7,31) C11  (7,32) C1 2  (7,33) C1 3

(7,34) C1, 1'B (7,35) C12AB (7,36) C,.3AB'
) C1A. 1 (7 , 38) C121AB1 (7,39) _Af-

(7,40) C_1A_ (7,41) -C, 2 AH (7,42) C1A B

(7,4() C1 .3 A• (8,31) ('21 (8,32) C2ý

(8,33) C23  (8,34) C21 Ax (8,35) C22AB
(8,36) C 2 3 AB (8,37) C021IAB (8,38) 9 .IA•I

(8,39) C23IAf'I (8,40) C2 1 A (8,41) -C 2 2 AB
(8,42) C23 Ay (8,43) C23 A. _ (9,31) C31

(9,32) C~32  (9,33) C3 3  (9,34) C-A x
(9,35) C 32 AA (9,36) Cz3Af' (9,37) CI IA9I
(9,38) C 321 A• (9,39) C3 31A r' 1 (9,40) C 31A x
(9,41) -Ca2 A (9,42) C__A _
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Table B.3 Elements of the Dynamics Submatrix FNS,,

Element Temi 11 Element I Term Element Term

(19,19) •o11 (20,20) I -ý 11 (21,21) -1 .
(22,22) (23,23) -/3• (24,24) Lh.

Table B.4 Elements of the Dynamics Submatrix FRRs

Elemenat f Term j Element Term

(47,47) -1/300 ft 2/see (51,51) -1/300 ft2 /sec
(5.5,55) -1/300 ft 2 /sec (59,59) -1/300 ft 2/sec
(63,63) -1/300 ft 2/ sec (67,67) -1/300 ft 2/sec

Table B.5 Elements of the Dynamics Submatrix Faps

D Element T Term Element Term Element Term

(68,68) -1 ft 2/sec (69,69) -1/500 ft 2'/sec (70,70) -1/1500 ft2/sec

(75,75) -1 ft 2/sfc (76,76) -1/500 ft 2 /sec jj (77,77) -1/1500 ft 2/sec
('?,82) -1 ft 2 /sc (83,3j) -1/500 ft'isec ]i (84,84) -1/150o fv/sec
(8 . 89 ) -1 ft2 /Sec (90,90) -1/500 ft 2 /sec 11 (91,91) -1/1500 ft 2/sc

B.2 Elcements of the Process Noise and Measurement Noise Matrices

This section defines the dynamics noie strengths and measurement noise variances

fwr the triu.b and filter models. The truth model non-zero dynamics noise strength are

defined in Tables B.6 and B.7. These noise strengths correspond to the driving noises

Wte,, wINS,, WRRS,, and Wops, in Equation (3.3). Note that the o2 terms in Tatl!e B.6

are vaiable names as defined in the Litton technical report and do not represent '.,:.riance

terms typically associated with o,'. The filter dynamics driving noise terms impk.1_,ented

after filter tuning are listed in Table B.8. Finally, the measurement noise variances used

in the truth and filter models are presented in Table B.9.
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Table 'j.6 Elements of Truth Model Process Noise Submatrix for the INS Truth Model

Element Term Element Term (1
(4,4) C.2 (5,5) 2(6,6) 0

(7,7) a. (8,8) 'Y (9,9) 0° _

(11,11) 206h~oa2 (19,19) 203vo,;. (20,20) 21 vo V2c

(21,21) 2"I V, (22,22) 2fl6g ' (Tg (23,23) 2136g

(24,24) 
2 /06,( _2_ _

Table B.7 Elements of Truth Model Process Noise for RRS and GPS States

le.mern . Term Element Term I_
(4747) 6.6 7.,610- 3 ft/see (51,51) 6.667x10-' ft 2 Isec 11 (55,55) 1 6.667x1 3 ft 20 '"ec
(59,59) 6.667x10-l ft 2 /see (63,63) 6"667xlO- 1 ft 2/seC I1 (67,67) 1 6.667x10- 1 ft 2 /sec

0,5 ft2 /.sec (69,69) 0.004 ft 2/sec (70,70) 0.004 ft 2/sec
(75,75) 0.5 ft 2 /,sec (76,76) 0.004 ft /sec (77,77) 0.004 ftZ/sec
82, -2) _ 0.5 ft 2 /sec (83,83) 0.004 ft 2 sec 1 (84,84) 0.004 ft 2 /sec

(79.89) 0.5 ft 2 /,sec (90,90) 0.004 ft 2 /sec 11 (91,91)1 0.004 ft"/sec

Table B.8 Filter Process Noise Q Values

Element Term Element Term

(1,1) 1.2x10- 1 3 radf2 /sec (2,2) 1.5x10-a rad2/scC
(3,3) 0.0 rad2/scc (4,4) 5 rad 2 /sec
(5,5) 5 rad2 /see (6,6) 85 rad"/sec

(r,_) 0•5oo fuJ-isecz (8,8) 15000 fu -sec-

(9,9) 110000 ft 2 /sec (10,10) 300 ft 2 //sec2

(11,11) 300 ft 2 /seC (12,12) 50 ft 2 /sec2

(13,13) 0.0 ft 2 /sc 3  (14,14) 70 & 40 ft 2 /sec2

(15,15) 0.5x10 5- ft 2 -/seC
2

Table B.9 Truth and Filter Measurement Noises R Values

Measurement Truth Noise Filter No[s

Baro Altimeter 2500 ft 2  3500 fp2

Doppler 0.02 ft 2 /sec 2 0.02 ft 2 /.seC 2

Transponders 4 ft 2  100 ft 2

Satellites 2 ft' 75 ft 2
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Appendix C. Tuning Plots for an NRS Filter

These plots are the baseline filter tuning plots for a single NRS filter. The plots

demonstrate the effect of the tuning values implemented in all ten of the filters used in

the MINRS multiple model. These tuning plots have been run using satellites 1-4 and

transponders 1-5.

The plots in this section are error mean ± 1 standard deviation plots. They reveal

the quality of the filter tuning and the filter's ability to track the truth r.odel. It should be

noted that the plots in this appendix are not comparing the actual filter and truth states.

The plots depict the filter and truth states translated into the more commonly recognized

navigation variables (latitude, longitude, north velocity, altitude, etc, ?tc). The translation

of the variables has been used before and is documented in past AFIT theses [14, 18].

The solid center line on the following plots is the mean error time history for the

applicable navigation variable. The mean error is defined as the Monte Carlo average

of the difference between the filter estimate of a state and the actual truth state. The

following equation is the mathematical definition of the mean error [9, 19, 13]:

N N

=eti - ej(ti) E {i~, true.,(ti) (C. 1)

S= 
t

where ýj(t,) is the filter-computed estimate of a given navigation variable and Xtr•e,(ti)

is thc truth modell value Of I same variable, at ttime , for run J.IVs the nummber of

Monte Carlo ruins in the simulation (15 in this thesis).

In addition to the center trace, two more pairs of lines are plotted. The first pair is

the Mean-tSigma (represented by the ... lines in the plots). These lines are symmetrically

displaced about the mean error, M . The Meanl=Sigma is the sum of the previously

defined mean, M,(t,), and the actual filter standard deviation ±+/ 4,(t4) , where P,(ti)

is the true error variance at time ti. The true standard deviation is calcudated from the

following equation [9, 19]:

1 N N 2(etse(4) = P-(--) = N 1 Zet(t)() (C.2)
N-1 1
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N is the number of runs in the Monte Carlo simulation, and Mfe(1 1 ) is the square of the

mean of a given state at each time of interest.

The second pair of traces (- - lines) represent the filter-compated ± afilter values

for the same s'tates and are symmetrically displaced about zero because the filter "believes"

that it is producing zero-mean errors [10, 19]. These quantities are propagated and updated

in the MSOFE [13, 18] software, using the covariance prcpagation equation shown in

Chapter II. These plotted lines represent the filter's estimate o:^ -ts own error.

A legend is provided for quick reference as to which of the iibes on the graph corre-

sponds to which of the variables of interest. This section contains error state covariance

plots for fourteen navigation variables of interest.

Table C. 1 Legend for Filter Tuning Plots

Symbol Definition
- Solid Line Mean Error

1f .. I 'm. C'

vottICH blue ivileari rEriui s'ituc oaigflra
- - Dashed Line ± Filter-Predicted Sigma
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Appendix D. Baseline Plots for Residual Monitoring

The GLR and Chi-Square algorithms implemented in this thesis rely heavi.y on the

residuals produced by the individual NRS filters in the MNRS. The onset of failures in

the system is reflected by the changes to the residuals of the extended Kalman filters. In

this appendix, the residuals of the satellite and the transponder measurement updates are

plotted for a failure-free run. These plots are used for comparison with the failure runs

in the following appendices. These residual plots are similar in structure to the tuning

plots of Appendix C. Each plot compares the Monte Carlo mean value of a residual, ±

the Monte Carlo calculated standard deviation for a scalar measurement residual, and zero

+ the filter-predicted standard deviation, . The derivation of the three plotted values is

shown below.

The center solid line on the following plots is the mean value of a measurement

residual. Similar to the plots in Appendix C, the mean value is defined as the Monte Carlo

average of the residual over the time history of the filter run. The following equation is

the mathematical definition of the mean value for a scalar residual [9, 13].

N IV

•(ti) --=- E 7'j (ti) =, E{zj(ti) - hj[i(t-),tJ]) (D.1)
Nj=1 j-=1

where yjy(ti) is the scalar residual for the scalar measurement update zj(t4). The subscript,

Jlers to vtlUL~ J1,11,InotI Carlo runt. IN is the tov'3a inucine ovYunte • arlo rXunI in the

simulation (15 in this thesis). hj [i(tT ), ti] represents the jth scalar vector of the h[i(t7 ), t1 ]

vector that corresponds to the specific scalar measurement.

In addition to the center trace, two more pairs of lines are plotted. The first pair is

the Mean±Sigma (represented by the • .. lines in the plots). These lines are symmetrically

displaced about the residual mean value, M,(ti). The Mean± Sigma is the sum of the

previously defined mean, Ml(t,), and the actual residual standard deviation ± :P 1 (4i) I

where P7 (tb) is the true error variance at time ti. The true standard deviation is calculated
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from the following equation [9, 19].

1 N N *_drue(N1 t "7(t) - - 1 (D.2)

N is the number of runs in the Monte Carlo simulation, and Mt!2(ti) is the square of the

calculated mean of a given residual at each time of interest.

The second pair of traces (represented by the - - lines) are the filter-computed

± ojlf,, values for residual standard deviation [10, 19]. Equation (2.29) is used to calculate

the full covariance matrix for the residuals. The scalar residual variances are the diagonal

terms in the [H P-HT + R] residual covariaDce matrix. These plotted lines represent the

filter's confidence in the scalar residual.

A legend is provided for quick reference as to which of the lines on the graph cor-

responds to which of the variables of interest. This section contains baseline, no-failure

residual plots for the nine measurement updates (4 Satellites and 5 Transponders) in each

of the ten NRS filters. The first plots presented are for the NRS1 filter. The plots follow

in order for the other nine filters, the last being NRS1O. Scalar residual plots are not

presented for the velocity or the barometric altimeter measurement updates, since these

are not used in the failure detection algorithm.

Table D.1 Legend for Filter Tuning Plots

Symbol Definition

I - Solid Line [ Mean Error
-.. Dotted Line Mean ErrorzhTrue Sigma

Dashed Line ± Filter-Predicted Sigma
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Appendix E. Residual Plots for a Transponder Signal Step Failurc

'this appendix- contains all the scalar residual data for the ten NRS filters during

a simulated step bias of 800ft on the Transponder I range signal from time t = 2000see

through t = 3000sec. The plots contained in this section are identical in format as those

in Appendix D. These plots are presented to support the validity of the MNRS as a valid

FDIR algorithm for an integrated navigation system.

A legend is provided for quick reference as to which of the lines on the graph corre-

sponds to which of the variables of interest. This section contains the plots for the nine

measurement updates (4 Satellites and 5 Transponders) in each of the ten NRS filters.

The first plots presented are for the NRS). filter. The plots follow in order for the other

nine filters, the last being NRS1O, Scalar residual plots are not presented for the velocity

or the barometric altimeter measurement updates, since these are not used in the failure

detection algorithm.

Table E.1 Legend for Filter Tuning Plots

Symbol Definition

- Solid Line Mean Error
... Dotted Line Mean Error ± True Sigma

- - Dashed Line ± FilterPredicted Sigma
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Appendix F. Residual Plots for a Transponder Signal Ramp Fiailure

This appendix contains limited scalar residual data for the ten NRS filters during

a simulated ramp offset of slope [I(t - 2000)]ft on the Transponder 1 range signal from

time t = 2000sec through t = 3000sec. The plots contained in this section are identical in

format to those in Appendix D. These plots are presented to support the validity of the

MNRS as a valid FDIR algorithm for an integrated navigation system.

A legend is provided for quick refer ice as to which of the lines on the graph corre-

sponds to which of the variables of interest. Unlike Appendices D, E, and 4, this section

contains only the scalar residual plots for the failed measurement signal (Transponder 1)

in nine of the ten filters. Filter 10 is not included, because it does not receive the failed

measurement. The first plot presented is for the NRSI filter. The plots follow in order for

the other nine filters, the last being NR.S9. Scalar residual plots are not presented for the

velocity or the barometric altimeter measurement updatcs, since these are not .se.d in the

failure detection algorithm.

Table F.1 Legend for Filter Tuning Plots

Symbol Definition

- Solid Line Mean Error
•.. Dotted Line Mean Error ± True Sigma

- Dashed Line F- Filter-Predicted Sigma

I Il,- m



00.200

4W3

lime Time0SM

(Filter 1) (Filter 2)

-r r•.r

00

6 SO' 250100 20 0 34)) 3OD00 D 0 50 [D3 2M 20 OW 30 0
Time (eW) Time (se)

(Filter 3) (Filter 4)

Time (Le)

(Filter 5)

Figure Fi Transpovtder 1 Scaaxr Residual Pots, Transponder Ramp Increase for NRS
Filters 1- 5

F- 2



SWm

400-

•0 ( 5 •0 IC 15 0002M 300 350 0 S0M 1000 ISM0 W 5M M 35•9 400 M---

4W 4W-

(F i lte (Filter 7)

00

0 -Q ol 15'oo M' .15' 3000 3500 4OW 5W IOO 15o Mo M5} 3M0 300 4=

(Filter 8) (Filter 9)

Figure F,2 Transponder I Scalar Residual Plots, Transponder Ramp Increase for NR13
F;lterE 6-9

F-3



Appcndix G. Residual Plots for a Transponder Signal Noise Failure

This appendix contains limited scalar residual data for the ten NRS filters during

a simulated ncise increase of (t50v)ft on the Transponder I range signal from time t =

2000sec through t = 3000sec. The plots contained in this section are identical in format

to those in Appendix D. These plots are presented to support the validity of the MNRS

as a valid FDIR algorithm for an integrated navigation system.

A legend is provided for quick reference as to which of the lines on the graph corre-

sponds to which of the variables of interest. Unlike Appendices D, E, and H, this section

contains only the scalar residual plots for the failed measurement signal (Transponder 1)

in nine of the ten filters. Filter 10 is not included, because it does not receive the failed

measurement. The first plot presented is for the NRS1 filter. The plots follow in order for

the other nine filters, the last being NRS9. Scalar residual plots are not presented for the

velocity or the barometric altimeter measurement updates, since these are not used in the

failure detection algorithm.

Table G.1 Legend for Filter Tuning Plots

Symbol ] Definition

- Solid Line Mean Error

Dotted Line Mean Error ± True Sigma
- - Dashed Line R Filter-I ,edicted Sigma
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Appendix H. Residual Plots for a Satellite Signal Step Failure

This appendix contains limited scalar residual data for the ten NRS filters during a

simulated step bias of 3500ft on the Satellite 3 pseudorange signal from time t = 2000sec

through t = 3000.sec. The plots contained in this section are identical in format to those

in Appendix D. These plots are presented to support the validity of the MNRS as a valid

FDIR algorithm for an integrated navigation system.

A legend is provided for quick reference as to which of the lines on the graph corre-

sponds to which of the variables of interest. This section contains the plots for the nine

measurement updates (4 Satellites and 5 Transponders) in each of the ten NRS filters.

The first plots presented are for the NRS1 filter. The plots follow in order for the other

nine filters, the last being NRS10. Scalar residual plots are not presented for the velocity

or the barometric altimeter measurement updates, since these are not used in the failure

detection algorithm.

Table H. 1 Legend for Filter Tuning Plots

Symbol Definition -

- Solid Line Mean Error
•.. Dotted Line Mean Error ± True Sigma

- -Dashed Line = Filter-Predicted Sigma.

Il-I



40

404

12D

-6*

(sat 1) (sat 2)
40

-601
-go-W

-1001!1

50 30 00 15 U 250. 3(U0 3501 00 0 50D 1 [503 fl 2I) 3(U) 35%0 4(I

(Sat 3) (Sat 4)

Figure 11.1 NRSl Satellite Scalar Residual Plots, Satellite Step Bias

11-2



0 '0m

-- ---0

420

30.30

I• .• __ _

"r•mc (W~) "lime ( J',z

(Trans• 1) (Trans 2)

40-0

30-]

Ii.

-40

20-
40

20.o

Sc --c - )

5S6 166 1506 2100 250D 3033 35W 4000 0 -'Q IOD 1500 2000 25W0 10) 35W 4(53
lime (am.) TMme (OWe)

(Trans 3) (Trans 4)

20 j\ 1 '-50fl35~3WS

(Tlrans 5)

Figure 11.2 NRS1 Transponder Scalar Residual Plots, Satellite Step Bias

11-3



6W 1
4W-

g 
- .I

V -200 -202o0• 00 to s• 20 50 3o 0 4
R.6

0 X0 S w 5 m MW 30 300 40 0 W 00 IQ 2 M 300 50 W
TIlM, (SM) llme (UC)

(Sat 1) (Sat 2)

Io00 •10001001

a -l -_

0 50]0 I00P 1500 M 3O00 3500 AM) 0 5 00 ) 100 0 m 0• =I m 0M 35W] M(S(m) T11= (.W )

(Sat 3) (Sat 5)

Figure H.3 NRS2 Satellite Scalar Residual Plots, Satellite Step Bias

11-4



5050

g o

0 500 1 i 1500 20 0') 2 ) 3 500500 LIUO 150 200 2500 00 3500 400)

154 650

1003 40

__1___ __ __ _ _ .

-2001,;

-2 Soo , 2o 20 3 500 400 1 00 M 25W 0 350 4000
Tume (2-) T1m 0.)

(Trans 3) (Trans 4)

250

50-5

03

.50-

-100

IMlfl 1503 0) M~ i 54X30 3500 AW
Tlme (m.0)

(Trans 5)

Figure 11.4 NR.S2 Transponder Scalar Residual Plots, Satellite Step Bias

11-5



50 - - - 50 -- r i--------r----

40ý 40-

130

-400

0 50 1030 15,00 20,0 2500 30M 35'W 40M *10 30) 1000 IYX 2~00 25( 3~0C 30 40GO
' lime (se) Tlime (sWe)

f3aL .1 Xy'at 2)

T ------ '0

3U03

20-0

1-0 1-0

-~~~~~ .. ft.2......

0 5W0 IOD) 1500 M5 2500 WO1 M5( 4W03 Th 5W 1500 1500 ROO 2500 31W0 330% 401)
Time (see) liMe (se)

(Sat r) (Sat 4)

Figure 11.5 NRS3 Satellite Scalar Rtesiduial Plots, Satellite Step Bias



.5-011 
i

40 401

10 to

_ --lo 11b.

.,.20

-30 1 .3ol1

500 1000 15CO 20C 2500 300 3500 405)0 l 1500 2000 2 25,00 M 3500 403)
TIMe Iwe) Ore kmv)

(Trans 1) (Trans 2)

401 40' " /-O

101

.20 .20I

-30~

404

50) �( • .� 0) 72) 250) 1 0) 350 ) 4 -00 5 lO O 15(3 20M 250) 5000 350) 40 OO
nme Isme) Time (s-)

(Trans 3) (Trans 4)

20A - -•- -!'I I
50) 156) 6 6 205) 2 30D 0 3')) 401)

limn (sae)

(T1rans 5)

Figure H.6 NRS3 Transponder Scalar Residual Plots, Satellite Step Bias

11-7



600--" I -'

40{)

U,

60( 60(0
*Ow2

5w R0OO 15W 200 25M 300) 3500 4000 0 500 1000 MW 20) 250 M) 350 400)

lim (se) li e (sm)

lsmt ls) lie(set )

Figure H.7 NRS4 Satellite Scalar Residual Plots, Satellite Step Bias

H -8



II• I T • - • -- 100 "

50

0 o

-50-•

-|00 _L -- - --.- - - IOU-

0 5C0 O0 1,500 2000 2-oW0 3O 3500 40OU 0 5W 1OM 1500 2oo 25W 3003 350 40'3
Tume km€) Time (•,)

(Trans i) (Trans m )

201[- - -- .,-- - - so - - I - - -." . •

1540

100-

a50

.11:

~50-

-ISOD

0 500 000 1500 20DO 250 3000 35W 4WO 5oIW ISM 50 2002 25M MW 3M' ýw)
Tim. 1gm) flm't (ice)

(Trans 3) (Trans 4)

501
F

ID Sw 1000 1500 200 2500 3W 356W 0
flme (Scc)

(Trans 5)

Figure H.8 NRS4 Trattsponder Scalar Residual P tots, Satellite Step Bias

F!-9



600 6

400 4W0

300

In •

"-200-:200

-4 400

"0 5W IOW 1500 2000 2500 3 M' 35M 4000 0 SW 10 15W 20 2500 M 350 M
'lme (sec) 11me (Sw)

(Sat 5) (Sf. 2)

30- - -O-- _

2W U

Figre t.9 NRS5 Satellite Scalar Residual Plots, Satellite Step Bias

H-0



40ý

E 20

A o

-204

-40

150 . ..

50 I

300 s

5000

50 W 3) 13500 1 2OW0 25W 3W)3 3502 400) 0 5W CD 10 5WS0 2000 25 3W 3.5(S 400 )
fine (se) Thiw (gee) -

(Trans 3) (Trans 4)--

Time (we)

(Trans 5)

Figure It.i0 NR{S5 Transponder Scalar Residual Plots, Satellite Step Bias

H-il



1=0

40-

*50__ __

-160

0 5606 k260 1560 2d 1 20 3000 35W. 40M0 M 11 50 0025030 3M40
Tlmc (se) '1m., w( )

(sat I) St2

"60 
-150

600

06

i1 2 ],i . i -5._[_

o 50 00 150- 2OQ NO 3030 3560 460 0 50) IOX) 15 AN 2 3000 35W3 400

(Sat 3) (Sat 4)

Figure H1.11 NRS6 Satellite Scalar Residual Plots, Satellite Step Bias

11-12



50, rs 5f _

500_

30[-

.0I 1.1 . .

IS

II'

-201 20[

-30[-3

_4 -40-

50 -00- '50 -o 0_0 3 5DL0 3SM• 100 00 Soo0 I00 15 26600210 ý0 310 40

Time ('CT) rime W)

(TranTr ) (Trans 2)

F50
4040

~20O

220

-20
401 -30!3) 35

(Trans 3) (Trans 4)

40

flag (2ac)

(Trans 6)

Figure H-.12 NRS6 Transponder Scalar Residual Plots, Satellite Step Bias

11-13



40-

-2

.50

0 5w IV0 1500 2000 25W 3000 3500 400D 0 500 1000 1500 2000 2300 3000 3500 40M
lUme (KC) Time (sC)

(Sat 1) (Sat 2)

40-

150

_ V_
0 l) 15W0 IV3 OW 0 3M)M 35W 4000 50 I 00 1500 20M 3M 0 35W 400M

(Sat 3) (Sat 4)

Figure 11.13 NRS7 Satellite Scalar Residual Plots, Satellite Step Bias

H-14



59------- 50r•''

40 1401
'1030

o...
20*201

(Ton 1)(ras2

.00 110 -

-30 .30

. . . . . .. .50L

So lO) 500 IW U 2CW• 2500O 3000 359) 4"• 1O -1O[%0 • 2 0 11 MW50 40LIL)"rime (3ý) "rime (hew)

(Trains 1) (Trans 2)-

40 1 20

402 • E 20

-0 '

_ _ _ in
.20 oj

40[~

-60tl0 40

0 (i OK -" ,•) .0 30 40 5W 1000 T500 2000 250C 36000 35( 4"0
Tlme ism) (l•i ( )

(Trans 3) (Trans 6)

so

40-

0-1

C 10O I 2"0• 30 40

10

-30--20-

sm40D 1M Iw 2I w40

(Trans 7)

Figure 11.14 NRS7 rrrailspolldflr Scalar Residual Plots, Satellite Step Bias

11-15



I50 
lo r "1 

r 1....-
IOO1

-10014 S . .. . 5• --• SI - r-- v---- •---,--- --•

000 IZ00 lY 0 2qlO 00 3000 3 500 K 
MO

o !JI( I €S 2 •) 
' l 

35c O)
(sNt 1) 

(sat 2)

400

~240

.50

,100 
-60(

0 . I 20) -500 30M 330 4000 
500 10)0 1500 2M M 3M 3500 4M

Time (m) 

TIme *0e)(Sat 3) 
(Sat 4)

Figure I11A5 NIRS8 Satellite Scalar Residual Piots, Satellite Step Bias

11-16



20 210

'- C

- -I 4 " . .

20 210

AOL 30.

"S0 30D3 3 A 5W" i0i uW '03 VW 35M 4

Tim. (3) Ermc to)

(Trans 1) (Trans 2)

00

E 20"

-201-

rmc (1WI t'tc (icc)

(Trans 6) (Trans 4)

I'

0OEM

0 50m 1033 1502 2m 150w 3CK02 35-W -:We

.•LM t ow Ii

(Trans 5)

Figure 11.1.6 NRSS Transponder Scalar Residual Plots, Satellite Step Bias

11-17



lii

20

.150

-IOU

10 ý5 IO'D I~4 5W 25'00 30'UO 35'00 400D 0 SW lIWO 1500 M)0 2( 30 35M 4MX)
•nm (me) (

(Sat 1) (Sat 2)

300F

40

___________-_____--____

0 500 10 .00 13,0 (l• m iýO Y 3500 4001 30DO NO 1) 15'W•I•T MS; 20 M 35 100 4000

(Sat s) (Sat 4)

Figure 11.17 NRS9 Satellite Scalar Residual Plots, Satellite Step Bias

H-18



40- 40[

2- 20

(Trans 1) (Trans 6)

.- _ _

-0

-30- -30

0 500 10 1500 2(0D 2500 30MW 3500 4000 500 1003 1500 2M 2M0 3M03 350 4W03
T-m€ ([ ) Time ()

(Trans 3) (Trans 4)

20

PIPI

Figure 11.18 NRS9 Transponder Scalar Residual Plots, Satellite Step Bias

11-19



100-

50-

-50

[1-
500 IW O 15'00 W 2W 3000 35W IM I 0 M 1I0 15I 20 M 3M 35W 4M

Time (mc) lmo (se)

(Sat 1) (Sat 2)

60-

No-

40-

A-20-

-40-

-60l

0 5w IWO0 150D MW 25GO 3000 3AW 40WD 0 in In) m5 W 2nW M 3500 4M

(Sat 3) (Sat 4)

Figure H.19 NRSIO Satellite Scalar Residual Plots, Satellite Step Bias

11-20



40- 40-

30[ 
3

0-2

-20 -20 - ,

t 0 I 
.

to 10-20

"..........

50

52060 2503 3 35'00 400D Soo 1000 Iw 2) 250 M M 4CED
TiM~mesc) Tum, (eec)

(-Trans 6) (Trans 2)

50

40 30

to

Soo :02 00 1.9N) 2000 250) 3000 35W 400 c 00 -0 XV2)M 3M 40

limc(WC)Time (Dcc)

(Tras 3)(Trans 4)

40-

30-

t10

I.2

* 52 0 1000 15WK 2X30 2502 3 5'0 400

Figure H.20 NRS1O Tfransponder Scalar Residual Plots, Satellite Step Bias

HW21



Appendix 1. Residual Plots for a Satellite Signal Ramp Failure

This appendix contains limited scalar residual data for the ten NRS filters during a

simulated ramp offset of slope [4(t -- 2000)]ft on the Satellite 3 pseudorange signal from

time t = 2000scc through t = 3000sec. The plots contained in this section are identical in

format to those in Appendix D. These plots are presented to support the validity of the

MNRS as a valid FDIR algorithm for an integrated navigation system.

A legend is provided for quick reference as to which of the lines on the graph -torre-

sponds to which of the variables of interest. Unlike Appendices D, E, and H, this section

contains only the scalar residual plots for the failed measurement signal (Satellite 3) il

nine of the ten filters. Filter 3 is not included, because it does not receive the failed mea-

surement. The first plot presented is for the NRS1 filter. The plots follow in order for the

other nine filters, the last being NRSIO. Scalar residual plots are not presented for thu'

velocity or the barometric altimeter measurement updates, since these are not used in the

failure detection algorithm.

Table 1.1 Legend for Filter Tuning Plots

I Symbol Definition
- Solid Line fMean Error

... Dotted Line Mean Error ± True Sigma
Dashed Line W- Filter-Predicted Sigma
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Appcndix J. Residual Plots for a Satcllite Signal Noise Failare

This appendix contains limited scalar residual data for the ten NRS filters during

a simulated noise increase of (300v)ft on the Satellite 3 pseudorange signal from time

t = 2000sec through t = 3000sec. The plots contained in this section are identical in

format to those in Appendix D. These plots are presented to support the validity of the

MNRS as a valid FDIR algorithm for an integrated navigation system.

A legend is provided for quick reference as to whichi of the lines on the graph corre-

sponds to which of the variables of interest. Unlike Appendices D, E, and 11, this section

contains only the scalar residual plots for the failed measurement signal (Satellite 3) in

nine of the ten filters. Filter 3 is not included, because it do,,s not receive the failed rnea-

surement. The first plot presented is for the NRS1 filter. The plots follow in order for the

other nine filters, the last being NRS1O. Scalar residual plots are not presented for the

velocity or the barometric altimeter measurement updates, since these are nz.t used in the

failule 1 "- " '"

Table J.1 Legend for Filter Tuning Plots

Symbol Definition
Solid Line Mean Error. _

... Dotted Line Mean Error ± True Sigma
- -- Dashed Line ± Filter-Predicted Sigma
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Appendix K. Rcsults of the NRIS Filter Chi-Squarc Tests

Within the MNRS failure detection algorithm, the Chi-Square test signals when

a failure occurs in any of the NRS filters. As described previously, a Chi-Square test is

conducted on t lie residuals of each of the ten NRS filters. The occurrence of a measurement

failure in a. particular filter is determined by comparing the magnitude of the Chi-Square

variable to an established failure threshold. If the Chi-Square variable value exceeds the

threshold, a measurement failure is declared aad the MNRS looks to a different NRS filter

for its navigation solution.

The following plots portrays this algorithm ciompletely for each failure. The plots

are organized according to failure run, beginning with the baseline run and concluding

with the noise failure on transponder 1. For each of the failure runs the following plots are

presented.

First the individual Chi-Square tests on the ten NRS filters are displayed. These

plots compare the Chi-Sqouare magnitude,

k
ki(t~k) -- •] yT(tj )A-'(tj )-(tj)(K1

j=k-2+1

with a predetermined threshold, T = 15. The window size of the Chi-Square test was

chosen to be N =- 3. The Chi-Square threshold and the window size have been chosen for

good performance (minimize false alarm rate and detection delay, while maximizing failure

UeteUtiuiu Late). IL ALould also be noted tuat the residual and covariance matrices, y(tj)

and A(tj) respectively, contain only the measurement information corresponding to the

four satellite and five tranponder updates. Following the Chi-Square plots, the final two

plots show when the individual Chi-Square tests fail the threshold test. The first five filters

for each run are on the first plot, followed by the last five filters on the second plot. WheIl

an individual filter's Chi-Square test exceeds the threshold, the line corresponding to that

filter will switch high. The filter is considered to be navigating accurately, according to

the Chi-Square test, when the line is low.

These plots have been included to demonstrate the robust nature of the MNRS filter

to single failures. These plots also demonstrate the ability for the MNRS to determine

K-i



which of the ten filters is producing the accurate naviga.tion solution during single niea-

suremient failures.
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Appendix L. Slopc and Intercept Rcsults of the CSPR Matching Filter

This appenidx contains results of a CSPR matching filter simnulation for each of the

six failures used in this thesis. The magnitude and duration of the simulated failures are

identical to those used for the MNRS simulation runs. Two variables are documented: the

slope and intercept of a line fit of the Chi-Square test. As stated in Chapter IV, the slope

and intercept are plotted as a function of time over the duration of the detected failure.

This duration is defined as all points in time where the Chi-Square test exceeds the failure

threshold. The first order line fit of the Chi-Square data is performed in MATLAB [8]. The

intercept and slope for the three transponder failures (step, ramp, and noise) are presented

first, followed by plots for the three satellite failures (same order). Analysis for the CSF'R

simulation is located in Section 4.5.
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